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Chapter 1

Introduction

This chapter will give a brief introduction to the motion of a single solid sphere
and a bubble in a liquid. At the beginning of each one of the next chapters th
introduction will be extended with the particular aspects discussed in thaterha
At the end of this chapter a guide through this thesis will be given.

1.1 Sphere and bubble motion

Bubble and patrticle laden flows can be found in a wide range of industigedj@o-
physical processes. They play an important role in mixing in chemical mnsacto
heat exchangers, atmospheric and oceanic flows. This broad applitalkibstim-
ulated bubbly and particles laden flow research. It addresses mastjomqsen a
broad range of Reynolds numbers. In the upper limit the researchdeousgdense,
highly laden flows. This research provides the overall statistical ptiepesf such
flows. In the lower limit the research addresses the problem of singldéobb
particle behavior, providing a more fundamental knowledge of the hytiadic
forces acting on these bodies. This thesis focuses on these fundaaspeats.
It studies the behavior of single, rising or ascending, solid sphericities and
rising bubbles in a quiescent Newtonian liquid.

The driving force on a sphere or bubble moving through a quiesceid ligjbuoy-
ancy. Therefore one might expect an axi-symmetric body to move alongdieale
path through the liquid. This is indeed true for small Reynolds numbers. But th
this idea does not always hold is shown by Leonardo da Vinci (1432123, 25].

He was the first who reported on the peculiar path a rising bubble followsghr
stagnant water. Figure 1.1 shows a sketch of one of his observatiortgdh the
bubble is rising along a helicoidal path.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1:Leonardo da Vinci's sketch of a spiraling bubble. Reproditem [23].

Similar observations are made for spheres moving in air. In 1726 Sir Isase N
ton reported on experiments done in 1719 by Dr. Desaguliers. Desaguiéa-
sured the sphere drag by timing the fall of spherically shaped inflatedladdéys.

He found that'the inflated bladders did not always fall directly down, but some-
times fluttered a little in the air and waved to and fro as they were descendirgg’
reason for this fluttering is the unsteady wake behind the sphere causihgting
forces and moments acting on it when it moves freely through the fluid [29].

The wake behind solid spheres has been a research topic for quite sarse y
Already in 1927 Ermisch [6] reported on unsteady wakes behind fixadrep.
Later more numerical and experimental studies followed [7, 11, 15, 222&}4
Only recently the wakes of freely moving spheres have been analyfed Tl
These wake structures are important to understand the motion of spheariegmo
freely through a liquid. The inertia of these spheres, and thereforgtieresfluid
density ratio, is also of great importance when the motion is unsteady. It might
have an important influence on the wake of the sphere. Therefore aexteresive
research into the wake structures of spheres in a wide range of Reymattbers
and sphere-fluid density ratios is necessary.

Related to the drag experiments by Desaguliers are the findings of Kanamane
and co-workers [12—-14]. They state that at Reynolds numbers |Hrgerabout
130 the drag experienced by light spheres (sphere-fluid density ratitbes than
0.3) is considerably larger than the drag experienced by heavy spiieealling
the previous discussion it might be expected that these observatiorenaexted
with changes in the wake structures. Therefore this light sphere motion evill b
investigated more thoroughly. Analysis of the forces acting on the sphauss
help us to explain Karamanev’s findings.

More recently (2004) Dsek and co-workers [10] published excellent numer-
ical work on sphere motion in a Newtonian fluid. They found that indeed the
motion of the sphere is not symmetric about a sphere-fluid density ratio cisne
one can conclude from the work by Karamanev and co-workers.r&aegimes
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of sphere motion (e.g. straight, zigzagging, chaotic) have been fourdiffer-
ent sphere-fluid density ratios and sphere diameters. Their work ginssgers to
many problems encountered in research related to freely moving spbetrgs|so
raises several new questions related to wake structures behind tthesesspBy
verifying their numerical work with an experimental study some of thesetiquess
will be addressed.

From solid spheres moving in liquids some links can be made to bubbles rising in
liquids, but some important differences remain. Firstly, bubbles and sdiierep
have a different boundary condition; solid spheres have a no-sligittamat their
surface, while on bubble surfaces slip is allowed and a no-shear conwition-
posed, when the bubble moves through a sufficiently clean liquid. Secdredly
cause of the small density of the bubbles compared to that of the liquid, thi&iner
in the system is almost entirely due to accelerated or decelerated liquid fdriegre
the liquid inertia plays an important role in the analysis of the hydrodynamiegorc
predicting bubble motion. Thirdly, the bubble shape is not fixed; localspres
around the bubble will cause local curvatures, leading to bubble shdpels are
non-spherical. For larger bubbles shape oscillations set in, causirti ieffects
which play an important role in the prediction of bubble motion.

Lindt [16] gives a nice overview of bubble motion for a wide range oflidab
diameters. Small bubbles rise rectilinearly, for somewhat larger ones tinéspa
zigzag or spiral. Still larger bubbles start to experience shape oscillatamely,
the bubble assumes a so-called spherical cap shape and rises relgtilinear

For bubbles performing path oscillations, without shape oscillations, the lit-
erature provides much information on results of the path followed by theléubb
[1, 2, 8,9, 19]. In recent studies more extensive research hasdose to explain
this bubble motion in terms of the flow field behind the bubble [3-5, 17, 20, 28].
Up to now only recent numerical work of Mougin & Magnaudet [21] reajhan-
tifies the forces and torques acting on bubbles of fixed ellipsoidal sledgted to
its wake. They state’...the present paper focuses on a description of the forces
and torques experienced by the bubble along its path. Achieving an ésntiva
determination of forces and torques through a laboratory experimergrischal-
lenging; only partial answers have yet been provided (Ellingsen & Ri§€4)..”

To provide more conclusive answers the regime of fixed shaped buidatEsm-

ing path oscillations will be investigated thoroughly. The wake visualizations of
De Vries [27, 28] will be repeated to have a more detailed knowledge of de w
structures. The forces and torques will be calculated to be able to tbedalela-

tion with the bubble wake and to understand the bubble motion in general.

In the regime of larger bubbles with shape oscillations, before the regime with
spherical caps sets in, the literature is less extensive. Lunde & Pefl8hslis-



4 CHAPTER 1. INTRODUCTION

cussed the effect of shape oscillations on the bubble motion. Otherckseaf4,

17] provide some information on wake structures behind such bubblesta-co
minated water. But detailed knowledge of their wakes and the relation to bubble
dynamics, especially shape oscillations, in this regime is not available. Analysis
of the oscillations in path, shape, and wake have to be done in order & neve
relations between these three aspects and understand bubble motion igithés re

This introduction addressed several research topics to be dealt with ithéhis
sis. The next section will provide an overview of the chapters in whictettegscs
will be discussed.

1.2 A guide through the chapters

The introduction stressed the necessity for an adequate understahthisg\@ke
behind solid spheres and bubbles. In chapter 2 the experimental setualyaea
the wake structures of spheres and bubbles will be introduced. Ttezrtbe thesis

is divided into two main parts: one part on the motion of particles (chapteri34, a
5) and one part on the motion of bubbles (chapter 6,7, and 8).

Chapter 3 discusses general features of wake structures behier@spising
or falling in quiescent water at Reynolds numbers ranging between 208628.
Chapter 4 is inspired by the work by Karamanev and co-workers [J2HIglves a
extensive discussion on the motion of very light spheres, with a sphededénsity
ratio of 0.02. It addresses the question why the drag experienced s/ shberes
is considerably larger than the drag experienced by heavy spheRsyablds
numbers larger than about 130. Chapter 5 is a reaction on the numeritabyvo
Dusek and co-workers [10]. In their numerical study they found sévegames of
sphere motion which have not been reported in literature before. Thaiemcal
results are verified by approaching this problem experimentally.

Chapter 6 gives the general aspects of single bubble motion. It reports o
bubble dynamics starting with small rectilinearly rising bubbles, continuing with
bubbles performing path oscillations and ending with bubbles performingapath
shape oscillations. This chapter is an introduction to the last two chapteap- Ch
ter 7 discusses the dynamics of oblate ellipsoidal bubbles of fixed shayaeriés
on on the work of Ellingsen & Risso [5]. Forces and torques are calclkate
visualizations of the wake structures are used to model drag and liftiexped
by these bubbles. Chapter 8 elaborates on the work by Lunde & Pell8hsl{
discusses larger bubbles which also perform shape oscillations anesa€s the
question what the relation is between the bubble path, shape and wake.

Chapter 9 is left to conclusions and recommendations for future research
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Chapter 2

The thermographic Schlieren
setup*

This chapter presents the stereoscopic and thermographic Schligrgnussed for
wake visualization behind rising and falling spheres and rising bubbles inrwate
The Schlieren method has advantages over other methods like PIV ariajely
tion, because it is able to visualize the entire 3D flow field without contaminating
the fluid. De Vries [11] was one of the first to report on wake visualizatloehind
rising bubbles using a Schlieren setup. His setup has been improved farhig
sensitivity to capture more details in the Schlieren images.

2.1 Introduction

The Schlieren technique is a well-known technique to visualize densityefitfers

in a transparent medium [9]. Density differences cause a change irrdifyht-

tion index of the medium. Light travelling through the medium will be refracted
differently depending on the local density of the medium. A technique similar
to the Schlieren technique is the shadowgraph technique. Whereas tlere®ch
technique visualizes the spacial derivative of the refraction indexhiwdosvgraph
visualizes the second spatial derivative of the refraction index. Tdreren most
cases, Schlieren is much more sensitive than shadowgraphy. A famad®ash
graphimage is the blurry view an automobile driver has, looking throughahted

tadapted from: C.H.J. Veldhuis, M. Versluis, & C.D. ONptes on a thermographic Schlieren
setup to be submitted to Exp. Fluids (2007)
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air just above a sun heated road or if one looks through the hot air ribimgpaa
candle.

Both Schlieren and shadowgraphy are broadly used in compressibke flow
which pressure fluctuations and therefore density differences amenoa. We
want to visualize wake structures behind freely rising and falling splerdsis-
ing bubbles in quiescent water. De Vries [11] was one of the first tatepovake
visualizations behind rising spheres using a Schlieren setup. His setujgéas
improved for higher sensitivity to capture more details in the Schlieren images.

lens

lens
point light
source_— | | -y ()
\

knife-
measurement section edge

screen

Figure 2.1:Basic idea of a Schlieren setup. The dark spot in the measumtesection
resembles a density difference. The dotted lines resernghierhys.

The basic idea of a Schlieren setup is shown in figure 2.1. A point lighteasr
positioned in the focal point of a positive lens, generating a parallellbwidight
behind the lens. A second positive lens focuses the light into its focal pdiet,e
a knife edge is used to cut off the light. Any light ray not affected by asilgn
difference in the measurement section will be cut off by the knife edgédat lkirys
which are bend by density differences will be projected onto the screen.

In reality the light source is not a perfect point light source. Figure Bd®vs a
sketch of a Schlieren setup with an extended light source. More informedion
be found in [4], on which part of this discussion is based.

measurement section image of image of measurement
lens iy | lens source section on screen
source b ‘ ;

lens

d

,,,,,,,,,,,,,,,,,

Figure 2.2:Basic idea of a Schlieren setup with an extended light source
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A point a in the source emits a light bundig¢ which focuses o/ in the
source-image plane, which is located in the focal plane of the secondQ¢est
points in the source are focused similarly and form the imégeof the source.
Notice that each light bundle, such @s:, completely fills the measurement sec-
tion. Therefore every point in the image of the source receives light feery
part of the measurement section.

Now consider light reaching point in the measurement section. This light
comes from the sourcéd, passes the imagéa’ of the source, and finally is fo-
cused onto the screen in poigit Hence, all light passing poimtcompletely fills
the imaged’a’ of the source. This is also true for other points (g.)gin the mea-
surement section. Only one plane, consisting of pajreted; can be focused onto
the screen precisely. Depending on the focal depth other parts of trseiraezent
section will also be sufficiently sharp.

Now we understand, that by cutting off a part of the light in the source-émag
plane the light intensity in the entire image, which is focused onto the screen, is
evenly decreased. The only effect of the cut off is the direction in wihieldensity
differences are visualized. If a straight knife edge is used to cut effigint only
density differences perpendicular to the edge can be visualized;dheeetircular
cut off (a dot) will be used to visualize density differences in all directiwitlin
the measurement plane.

The basic aspects of Schlieren are introduced and it is shown that thier&ch
technique does not alter the flow, it only uses optical techniques to visubéze
flow. In the next section two standard techniques will be discussed: Ri\tge
injection, which are both widely used in the literature to visualize wake strigcture
behind bodies. This is followed by a section on the Schlieren setup andiensec
in which some experimental results will be presented and comparisons ef thos
results with the literature will be made. The last section is left to conclusions.

2.2 Flow visualization methods

Two common techniques used in the field of wake visualization in water are Par-
ticle Image Velocimetry (P1V) and dye injection. PIV uses thin light sheets which
lighten small particles, which are added to the water. These particles haseamntiee
density as the surrounding water. By following these particles the locaksfiaw-
tures can be reconstructed for the flow captured in the light sheet. Falythe
injection method one injects dye just behind the an object. The flow will carry on
this dye and the flow structures will be visualized. Because the sphatésibhbles

are rising freely both technigues have their disadvantages.
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PIV limits the measurement section. Because the light sheets only have a lim-
ited thickness they do not provide a 3D view of the flow field. Furthermoee, th
spheres and bubbles rising through water at the Reynolds numbers ing=aested
in hardly move straight through the water. This problem was also encednibgr
Briicker [1] who used PIV for the visualization of wake structures behirbles.
Hence, the chance to capture a sphere or bubble in the light sheet isdoownea
captured it will soon continue its path outside the light sheet. Although PIV can
provide quantitative data on velocities around moving spheres or bublkel¢snth
resolution of images with the actual sphere or bubble captured is low.

Dye injection techniques are commonly used for flow visualization behind
fixed objects. Schouveiler & Provansal [8] obtained beautiful pictina®s dye
injection experiments to visualize the wake instabilities behind fixed spheres. A
major problem in their experiments was the position where dye is injected. Vortic-
ity generated at the sphere surface leaves the surface at specificrieéa vortex
threads. When dye is injected outside these vortex threads there is & ¢hanhc
the flow is not entirely visualized. Furthermore, downstream of the spdere
ondary vortices may be induced by the vortices leaving the sphere suaabas
been reported by Johnson & Patel [3] in their numerical study on waketstes
behind spheres. Schouveiler & Provansal discuss this problem aadhad they
are not able to visualize these induced wake vortices, because thenagi@sean
the vortex threads generated at the sphere surface.

Dye injection has also been used by Magarvey & Bishop for visualization of
both freely moving sphere and bubble wakes [5-7]. Here a secordieprcap-
pears. The dye introduces contaminants in the water. For solid spherisstbig
problem, because the no slip boundary condition is not affected by coratatsin
For bubbles contaminants can change the bubble boundary conditiondrehear
in clean water to no slip in contaminated water, changing the bubble dynamics sub
stantially. Not only the amount of vorticity generated at the bubble surfzeges,
but also the shape of the bubble is affected by the contaminants. PIV ingedu
similar contamination problems, but here one might still think of micro bubble PIV
instead of using micro particles for flow visualization.

The Schlieren technique introduces no contaminants in the fluid and is tieerefo
in particular interesting for bubble experiments. This was also the main interest
of De Vries [11]. The field of view is not limited to a sheet or places wher dy

is injected, it provides flow information in the entire measurement section. In the
next section the Schlieren setup will be introduced.



2.3. SCHLIEREN SETUP 13

| 2000 mm |
4x
front surface
mirrors 2X 4x
50x50 mm =100 mm f=1000 mm
@50 mm %100 mm ax
=150 mm % front surface
$50 mm )L \l} mirrors
‘ 150x150 mm
digital camera S N N{\ )
500-1000 fr/s v} 2
\ o
\ o
\ 3
@ 1 3
2x cutoff
2x light \
%1.5-3.0 mm ® water tank
S ‘ 1000 mm ‘ 150x150x500 mm -

I 1

2x pinhole and diffusor

?1.5-3.0 mm

Figure 2.3:Schematic top view of the stereoscopic Schlieren setupy &eas indicate
the light bundles

2.3 Schlieren setup

2.3.1 The optical components

Figure 2.3 shows the schematic top view of the Schlieren setup. In the center
the water tank (15x15x50cm) is positioned in which the spheres and budnigles
released. Two light sources are used: either two Light Emitting Diodes\{).12
or two halogen lamps (50W). The pinhole (diameter 1.5-3.0 mm) with diffusor
creates a perfect point light source. A thin milk white plastic plate is used as
diffusor. Typical path oscillations of spheres and bubbles moving ttrovater
have a wavelength around 50 mm. To capture an oscillation period profrezly,
vertical field of view is 70 mm. Therefore the two light bundles are collimated
by the first two positive lenses (f=1000 mm, 100 mm) into two non-diverging
light bundles (100 mm). Four front surface mirrors (150x150 mm) directwo

light bundles perpendicular to each other through the water tank. Twitveos
lenses (f=1000 mm, @100 mm) focus the light bundles after passage thioagh
water tank onto the cutoff plate, with a circular cutoff of 1.5-3.0 mm, depending
on the used pinhole. The circular cutoff is simply produced by printing dots o
transparent plastic sheet. After the cutoff two positive lenses (f=100 f&dmnan),
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a positive lens (f=150 mm, 50 mm) and four front surface mirrors (4040 are

used to direct the light bundle directly onto the high speed camera which iser eith

a Kodak CR2000 with frame rates varying between 500-1000 fr/s angd5324
pixels or a PCO at 640 fr/s with 1024x1280 pixels, resulting in resolutiofs2if

and 0.078 mm/pixel, respectively. The outer rim of the 100 mm light bundles
might be distorted by abberations; therefore the actual field of view is limited to
70 mm. The system is calibrated using a dotted grid (dot diameter 3 mm, spacing
5 mm) positioned vertically, diagonally in the water tank before and after asserie
of experiments. The last three lenses are used to adjust the focus anificatign
factor. In the post-processing a background image is subtracted froecerded
images to provide a smooth background in each image. Finally, we end up with an
image with two projections of a sphere or bubble with its wake structure.

2.3.2 The thermographic Schlieren method

Density differences in the water created by the motion of spheres andebudoie

too small to detect. Therefore, a vertical temperature gradient is impostgton
guiescent water in the water tank. A heating lamp is positioned on top of the water
tank, creating a constant vertical temperature gradient of 1.0 Kcwn array of
temperature sensors (one every 50 mm) is positioned vertically in the water tank
to constantly measure the water temperature with an accurat(.@f K. Exper-
iments are conducted with temperatures between 2546 82the measurement
section. The spheres and bubbles drag along water of differentyjemsating a

local change in density which can be visualized with the Schlieren technique.

The temperature gradient has a negative side effect; it changes thevigate
cosity (up to 14%). Especially for time resolved reconstruction of forcéagon
these bodies, this viscosity change has to be taken into account. Thissilgn ea
be done once the temperature is known from the temperature sensorgeni-he
perature changes give rise to a change of the surface tension of.6fy Hence,
locally, on the bubble surface, this change can be neglected.

The next section will give the results with respect to flow visualizations loehin
spheres and bubbles. These results will be compared with experimenths i@
the literature.

2.4 Experimental results

Two examples of flow visualizations will be discussed. One on the wake tehin
a bubble, which is compared to work of De Vries [11]. The other on theewak
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(@)

(b)

Figure 2.4: Stereoscopic Schlieren images of wake structure behindralisg rising
bubble. &) Image taken from De Vries [11]b)f Image made with the Schlieren setup with
two halogen lights. Black arrows indicate a weaker wakecsting not visible in figured).

(c) Same image as in figurg); but now with path and bubble shapes included. The bubble
shapes are plotted every 10 frames, giving a time interv&l.®4 s between the bubble
shapes. The elapsed time after the bubble has entered theffigéw is given in the upper
left corner.

structure behind a falling sphere, which will be compared with dye injectigns e
periments by Schouveiler & Provansal [8].

2.4.1 The wake behind a rising bubble

Figure 2.46) shows a visualization of the wake behind a spiraling bubble made
by De Vries [11]. He used a stereoscopic Schlieren setup with two 500%Wuvie
lights and recorded the experiments with a NAC high speed camera at 500he/s
well-known double vortex threads are clearly visible. With the Schliererpssto-

ilar experiments were carried out at 640 fr/s (figurest®.46d €))). Comparison

of figures @) and p) show an improvement in contrast and sharpness. More de-
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(a) (b)

Figure 2.5:(a) Wake behind a fixed sphere visualized with dye injectionkefafrom
[8]. (b) Wake behind a freely falling sphere visualized with the l&chn setup with two
LED’s.

tails are visible in figurekf), where a third weaker vortex structure becomes visible
indicated by the black arrows. Comparison with figureghows that this distor-
tion is positioned on the bubble path. This observation agrees with an remark b
Ellingsen & Risso [2] on the wake behind rising bubbles. They state thatdke w
consists of two vortex threads and a weaker axisymmetric wake straightiibb
bubble. With the setup of De Vries it was not possible to detect this weaker wa
structure. A reason for this might be that his camera provided less cootridme
mirrors and lenses he used were of lower quality, which can introducettst®

in the image. More information on the wake behind rising bubbles can be found
chapters 7 and 8.

2.4.2 The wake behind a falling sphere

Schouveiler & Provansal [8] visualized wake structures behind figgdres, using
dye injection (figure 2.%)). The periodic vortex shedding in hairpin vortices is
clearly visible. In the present setup spheres are released that arertiean water,
resulting in similar wake structures (figure 2p( The sphere is now allowed to
move freely through the liquid, but still the details of the hairpin vortex shegdin
is captured nicely. Although the Schlieren technique averages over tizemal
depth in the field of view, the vortex structures are so localized that thepean
captured in much detail. More on the wake structures behind freely risidg an
falling solid spheres can be found in [10] and chapter 3.
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2.5 Conclusion

By using an artificial temperature gradient in water the Schlieren technajubec
used for flow visualizations in water at low Mach numbers. The Schliererpse
of De Vries [11] is improved, resulting in sharper images with more contrast. |
is shown that the use of LED or halogen light sources is still sufficientdpenty
visualize the wakes of freely rising or falling solid sphere and rising bubinie
quiescent water.

The Schlieren technique has some advantages over the establishedueshniq

as PIV and dye injection. It captures flow structures in the entire measnteme
section, making it suitable for freely moving objects. Furthermore, it doés no
introduce contaminants to the water making it specifically suitable for flow visual-
ization of bubbles rising in purified water.
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Chapter 3

Motion and wake structure of
spherical particles?

This paper presents results from a flow visualization study of the wakds&ac
behind solid spheres rising or falling freely in liquids under the action of grav-
ity. These show remarkable differences to the wake structures odseetend
spheres held fixed. The two parameters controlling the rise or fall vela@ty the
Reynolds number) are the density ratio between sphere and liquid ancatheds
number.

3.1 Introduction

In the past years extensive numerical investigations [3, 7, 8, 15, &g astab-
lished how the wake of a sphere héikdin a uniform flow undergoes a series of
transitions as the Reynolds numbies = Ud/v is increased. Her# is the free
stream velocity( the diameter of the sphere, andhe kinematic viscosity of the
water. It was found that the wake is axially symmetric upR® = 212. Above
this value a planar-symmetric wake is found that consists of two steady counte
rotating threads. ARe ~ 270 there is a further transition and the planar-symmetric
flow becomes time-dependent: opposite-signed streamwise vortices thera for
series of loops that resemble hairpin vortices. As the Reynolds numbethsifu
increased, the flow gradually becomes more irregular and finally turbulére.
Digital Particle Image Velocimetry (DPIV) measurements bydker [2] and the

1C.H.J. Veldhuis, A. Biesheuvel, L. Van Wijngaarden, & D. Lohgkation and wake structure of
spherical particlesNonlinearity18, pp. C1-C8 (2005)
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flow visualization studies by Schouveiler & Provansal [16] have confirmest of
these numerical results and have further elucidated the sequencesitfdran

For freely moving spheres the Reynolds number is defined by the measured
meanvelocity of rise or fall of the spher&; and the corresponding ‘Reynolds
number’ becomesier = (Ur)d/v. Themeanvelocity is the time averaged ve-
locity of the sphere, not including the acceleration of the sphere fromThse flow
looses its axial symmetry at a critical Reynolds number which is not significantly
affected by the density ratja, /p [5]: Re.,=211.9 forps/p — oo (i.e. sphere held
fixed), Re., = 206.3 for ps/p = 0.5 and Re., = 205.8 for ps/p = 0.0 . This
is in good agreement with, for example, the experimental results on solidesphe
[13], on surface-contaminated gas bubbles [4], and on wake vistializgdn ex-
periments with drops of tetrachloride and chlorobenzene falling in waterlfA]0
As pointed out by Natarajan & Acrivos [14], these drops must havenmth ef-
fectively as solid spheres due to presence of surface-active impustidsthese
visualizations have therefore often served as a basis of comparisonunitkrical
studies on fixed spheres.

What happens fofreely falling or rising spheres at higher Reynolds number,
which is more common in multiphase flow applications? How are the wake struc-
tures and transitions observed for the fixed sphere case modified?d aitfwear)
difference in wake structure between rising and falling spheres? In dipisrpve
present flow visualizations of the wakes behind freely moving solid splattarge
Reynolds numberRKe = 450 — 4623) for which the density ratips/p is in the
range 0.50 to 2.63.

3.2 Experimental details

The flow visualizations of the sphere wakes were carried out in a tresrgpank
(0.15 x 0.15 x 0.5 ) filled with decalcified water. Smooth plastic spheres with
diameters between 1.5 mm and 10 mm and densities between 50D &gd2781
kg/m? were released from rest. By means of an optical system consisting of two
LED-lights, pinholes, lenses and mirrors, two perpendicular images ofittielp

and its wake were created and recorded at 500 frames/s with a CCDecéigere

3.1). Hence, each image consists of two perpendicular views of the sédmaessp
The images are taken at a position in the transparent tank where thessgbere
not accelerate anymore. The wake was visualized using the Schlieremnqgieeh

To this end a small vertical temperature gradient in the water was maintained (1
K/cm.). Themeanwater temperature at the measurement section was 302 K, with
corresponding values of the densityp)) and viscosity (v)) of 996 kg/n? and
0.80210-% m?/s, respectively. Hence, the Reynolds number is based améiaa
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Figure 3.1:Top view of the Schlieren set-up used to visualize the sphaies.

viscosity and is defined a8er = (Ur)d/(v). It turned out to be difficult to keep
a constant temperature gradient. Therefore the error imdewater temperature
at the measurement section is about 3 K, leading to a relative error in thosiysc
of 10 %. As opposed to the fixed-sphere problem, the Reynolds numtiee éby
moving spheres is not an independent parameter. Following Jerady [5] we
choose as independent dimensionless variables the gati@) of the densities
and the Galileo number

(I(ps/(p) — D]g)"/2a*>

«= @)

(3.1)

Since(|(ps/(p) — 1)|9d)"/? can be considered as a velocity scalelays a similar
dynamical role as the free-stream Reynolds number in the case of fikedesp
The parameter values for which we made the flow visualizations are summarized
in Table 1.
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Number d ps  ps/(p) G  Rer Figure

falling 1 3.2 1028 1.03 121 205 Figure 3.8
2 4.0 1058 1.06 239 325 Figure 3.8

3 15 2781 279 304 450 Figure 3.8

4 6.0 1035 1.04 359 546 Figure 3.2

5 6.0 1043 1.05 394 608 Figure3.2

6 4.0 2629 2.63 1261 1970 Figure 3.8

rising 7 32 965 0.97 121 210 Figure 3.6
8 50 950 095 297 450 Figure3.3

9 50 947 0.95 306 475 Figure3.3

10 40 873 0.88 334 565 Figure 3.6

11 10.0 988 099 350 576 Figure3.4
12 8.0 982 0.99 331 602 Figure 3.6
13 6.0 958 096 355 647 Figure3.2
14 6.0 950 095 390 656 Figure3.2
15 6.4 925 0.93 534 920 Figure 3.6
16 6.4 864 0.87 728 1180 Figure 3.7
17 7.9 925 0.93 732 1350 Figure 3.7
18 6.4 650 0.65 1160 1965 Figure 3.7
19 95 500 0.50 2548 4623 Figure 3.7

Table 3.1:Parameter values in our visualizatiomsin mm, p, in kg/m?. G is defined by
equation (3.1) andke; is themeanReynolds numberKe, = (Ur)d/(v)).

3.3 Observations

Figure 3.2 shows stereoscopic images of the wake structure behind fallieges
with densities approximately 4% (fig. &Rand 5% (fig. 3.B) higher than that
of the surrounding liquid, and, for comparison, that behind rising sghesth
densities that are approximately 4% (fig. &.2and 5% (fig. 3.d) lower. In all
these examples the sphere diameter is 6 mm, so that the pararisteoughly
identical in casesa) and €), and in casesh) and @d). The lighter spheres have
a slightly higher vertical velocity than the heavier spheres, as indicatedeby
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in table 3.1. The wakes of the falling spheres appear to have a more laregu
structure, and the path followed by these spheres shows much largatialey
from a straight vertical line. These pictures illustrate that the density pafit)
matters, even at values close to 1.

Figures 3.8 and 3.3 give examples of a phenomenon that we believe to be
characteristic for spheres following a zigzag path, namely that the twotemun
rotating threads in the wake cross at the centerline of the zigzag (indicatéd b
in fig. 3.3a). The presence of these threads of opposite-signed streamwise vorticity
implies that the sphere experiences a lift force. As a consequence pétioglic
crossing of the threads this force is always directed towards the zigragrdine
(see the sketch in fig.3B A similar observation was made by De Vrietsal. [18]
on the wake behind zigzagging gas bubbles.

Schouveiler & Provansal [16] remark that for a fixed sphere “theadyins of
the two opposite-sign streamwise vortices ... presents a striking similarity with
the long-wavelength (or Crow) instability of a pair of counter-rotating fberaor-
tices” and further “such a vortex pair instability could be responsible chipear-
ance of unsteadiness in the sphere wake”. Figure 3.3 suggests thandtions is
slightly different for freely moving spheres. Here it appears that dlosiee sphere
each of the vortices first develop a ‘kink’ (indicated by ‘2’ in fig. & 3a process
in which the curvature of the vortices presumably plays an important roledd ]
the kinks develop further downstream of the sphere they come neaotestand
finally combine into what resembles a hairpin vortex (indicated by ‘3"). This s
guence of events can be seen in the flow visualizations presented in3igusze
also figure 6 of ref. [11].

As the kinks develop and hairpin-like vortices are formed further dowasty
a pattern results. Lunde & Perkins [9] interpreted this pattern as a séhagpin
vortices of alternating sign, shed periodically by the spheres at the exreime
the zigzag path. Our visualizations suggest instead that the streamwisdyortic
produced at the surface of the sphere does not change sign; thef ligslike-
signed hairpin vortices cross at the centerline of the zigzag.

Figure 3. is an example in which more than one kink develops in a half-
period of the zigzag. We have not yet been able to determine the condiitions (
terms of the parameteys /(p), G, or Rer) that select the number of kinks that
are formed. What is remarkable is that the development of the kinks andthe s
sequent formation of the hairpin vortices do not seem to affect the trayemftthe
sphere. This corroborates the opinion that at high Reynolds numbedstiés of
the vorticity distribution very close to a body basically determine the forcestthat
experiences.

We will now turn to experiments with density ratios more different from one.
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(b)

Figure 3.2:Stereoscopic views of falling and rising spheres and thekes. The left part
of each frame shows the xz-plane and the right part the yzeplln each case the sphere
diameter is 6 mm. The values of the parametersp), G, andRer are, respectively:d)
1.04, 359, 546;Hf) 1.05, 394, 608;d) 0.96, 355, 647;d) 0.95, 390, 656.

(b)

Figure 3.3: Stereoscopic views of rising zigzagging spheres and thakes. The left
part of each frame shows the xz-plane and the right part th#ayre. The views illustrate
the crossing at the center-line of the zigzag path of the umter-rotating threads of the
wake (‘1"), the occurrence of kinks (‘2') at the extremes loé {path, and the formation of
hairpin-like vortices (‘3") as two neighbouring kinks caet. Values of the parametefs
ps/{p), G andRer are, respectively:a) 5 mm, 0.95, 297, 450p) 5 mm, 0.95, 306, 475.
As shown in €) the crossing of the vortex threads results in a lift fofcéhat is always
directed towards the center-line of the zigzag path. D shbeglirection of the drag force

and B the one of the buoyancy.
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Figure 3.4:Sequence of stereoscopic views of a rising sphere and its.vildie left part
of each frame shows the xz-plane and the right part the yizepl@he views illustrate the
process of formation of a hairpin-like vorted & 10 mm, ps/{p) = 0.99, G = 350 and
Req = 576).

Recently Jennyet al. [6] reported on their numerical work on freely moving
spheres in a Newtonian fluid. They focussed on the frequencies in tke aveal

the path of the sphere in the parameter space spanned up by the densiydatio
the Galileo number. Figure 3.5 reproduces their phase diagram. The raumber
the diagram refer to the numbers of the experiments given in table 3.1. A lot of
our experiments are outside their investigated region and new experimentd sh
be done in the interesting regions around a Galileo number of 200. Fuxiheri-e
ments should focus more on the frequencies in the wake of the sphererapdre

this to the frequencies given by Jenelyal. (see caption of figure 3.5). Further-
more, we must stress that wake visualizations with the Schlieren method demand a
temperature gradient in the water. Hence the density and viscosity of theasate
not constant through the entire flow field and the local Galileo number wilbaot
constant. The differences between theanGalileo number and the local Galileo
number can reach 10 % and must be taken into account when analyzireg3igu
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Figure 3.5:Phase diagram: density rafig/(p) versus Galileo number. The grey box is
the regime analysed by Jenaval. [5]. They find in the most left region an axisymmetric
wake. The symbols, directly taken from [5], denotesteady and oblique; oblique and
oscillating regime with low frequency)(045 < f < 0.068), x oblique and oscillating
regime with high frequenciesf (= 0.180), O zigzagging periodic regim®.023 < f <
0.035) andO chaotic regime. The numbers denote the number of our expatim table
1. Experiments 6 and 19 fall outside the diagram.

A striking difference between our experimental data and the numericabtiata
Jennyet al. is the behavior of falling spheres with a density ratio close to one.
From figures 3.2 and 3.8 it can be seen that these falling spheres cdalkils@
non-vertical path. This contradicts Jergtyal. who claim that only rising spheres
can go in a zigzagging motion (the circles in the phase diagram figure 3.5).

From our experiments one concludes that for increasing Reynolds minebe
wake becomes more irregular (figures 3.6 to 3.8). The two-threadedsiraiture
is also present for higher Reynolds numbers. Is the double threadedsivacture
also present in the case of the highest Reynolds numbers, where taestuatture
has a turbulent structure? If so, do instabilities in the wake cause kinkittgeof
vortex threads which leads to this turbulent wake structure? Furthearobswill
address these questions in order to get a better understanding of titabplayer
separation from spheres at high Reynolds numbers as shown on trissogaaer.
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Figure 3.6: Stereoscopic views of rising spheres and their wake strestobserved at
several Reynolds numbers (Reynolds number increases ftord and continues in figure
3.7). The left part of each frame shows the xz-plane and g piart the yz-plane. Values
of the parameterg, p,/(p), G and Rer are, respectively:a) 3.2 mm, 0.97, 121, 210b{
4.0 mm, 0.88, 334, 565¢) 8.0 mm, 0.99, 331, 602d) 6.4 mm, 0.93, 534, 920.

(d)

Figure 3.7: Stereoscopic views of rising spheres and their wake strestobserved at
several Reynolds numbers (Reynolds number increases ftord)a The left part of each
frame shows the xz-plane and the right part the yz-planeuegbf the parameters
ps/{p), G andRer are, respectively:&) 6.4mm, 0.87, 728, 1180b) 7.9 mm, 0.93, 732,
1350; €) 6.4 mm, 0.65, 1160, 1965¢Y 9.5 mm, 0.50, 2548, 4623.
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Figure 3.8: Stereoscopic views of falling spheres and their wake sirastobserved at
several Reynolds numbers (Reynolds number increases ftord)a The left part of each
frame shows the xz-plane and the right part the yz-planeuegbf the parameters
ps/{p), G and Rer are, respectively:d) 3.2mm, 1.03, 121, 205h) 4.0 mm, 1.06, 239,
325; ) 1.5 mm, 2.79, 304, 450df 4.0 mm, 2.63, 1261, 1970.

3.4 Conclusions

Flow visualizations of the wakes behind solid spheres moving under the ation
gravity reveal remarkable differences with the wakes behind sphetdsfiked:

the crossing of threads of opposite-signed vorticity, the formation of lankbese
threads that develop into hairpin vortices. The ratio between the densitibe of
sphere and that of the surrounding fluid appears to be important. Oerignts
clearly show the difference in path and wake structure between risin¢aHimg)
spheres with the same Galileo number. Furthermore, the double threaded wak
structure seems to be a basic feature, even for large Reynolds nuffibisrshould

be investigated thoroughly in future research.
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Chapter 4

Freely rising light solid spheres

This paper examines the remarkable observations of Karamanevanaikers
[8—10] on the behavior of spheres rising freely in a Newtonian fluid whemdatio
between the density of the spheres and that of the surrounding fluid ithkess
0.3. For these light spheres Karamanev & Nikolov have proposed lagefhe
standard relation for the drag coefficie@t, as a function of the Reynolds number
Re by Cp = 0.95 for Re > 130. We have performed detailed experiments with
spheres with density ratio of about 0.02. High-speed imaging is used ¢orec
struct three-dimensional trajectories of the rising spheres. From tlagyars of the
trajectories the magnitudes of the drag and lift forces exerted by the sutiog
fluid are deduced. It turns out that the Karamanev & Nikolov propasabt sup-
ported by our experiments. It is argued that the two main contributions tdremp
force are (i) a viscous drag that may be estimated from the standard drmage c
by evaluating the Reynolds number using the actual value of the velodityjipn
an inertial drag that arises essentially by the same mechanisms that teaub#-
induced drag familiar from wing theory. Estimates of both contributions, therlatte
using visualizations of the wakes of the spheres, give a favorable agm¢evith
the measured drag forces.

4.1 Introduction

The mean velocity of single solid spheres, rising or falling freely in an infiniid fl
is of interest in numerous fields, including chemical, mechanical, and envaon

$C.H.J. Veldhuis, A. Biesheuvel, & D. LohsEreely rising light solid spheressubmitted to J.
Fluid Mech. (2006)
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tal engineering. This velocity may be determined from a balance betweemwthe n
gravitational force and the mean drag on the sphere,

§md’ |ps = plg = gnd® pUF Cp, (4.1)

together with a relation for the drag coefficigtit, as a function of the Reynolds
numberRe = Urpd/v. Hereps, d, andUr denotes the density, diameter, and
mean velocity of the sphere, respectivelgndv are the density and the kinematic
viscosity of the surrounding fluid, angis the gravitational acceleration. A simple
and well-known relation for the drag coefficient is that of Turton & Lesgiel [14],

24(1 + 0.173 Re%-057) 0.413
= ; 4.2
Cp Re T 16300Re 10 42)
a discussion of this relation and of others, together with a proposal fdtemative
24 0.407
Cp=—(1+0.150Re" Y 4 — ——— 4.3
p=Tg U+ ) T sTI0RT (4.3)

is given in Brown & Lawler [2]. Both relations are applicable e < 2 x 10°.

The data used to construct these relations appear to not have inclustesd ca
in which the density ratip,/p is small. Karamanev and co-workers have pointed
out, referring to their experiments with ‘light’ solid spheres rising in water [9,
10] and soap bubbles filled with helium or hydrogen rising in air [8], thasehe
relations do not apply ibs/p < 0.3. They suggest that faRe > 130 the constant
value Cp = 0.95 is more appropriate. This may be compared with the much
smaller limiting value for high Reynolds numbers following from egs. (4.2) and
(4.3), namelyCp = 0.413 andCp = 0.407, respectively, that is found for heavy
spheres. (Karamanev & Nikolov mention “Newton’s law” in the title of their 1992
paper which states that, ~ 0.5.)

The conclusion must be [cf. 8] that the dynamics of a heavy and a ligkreph
are quite different even though they have the same diameter, the samet@bsolu
value of particle-fluid density difference and are placed in the same flutdasthe
driving force due to gravity has the same magnitude but only a differesttitn,
namely, upwards or downwards. The explanation, as put forwatdrfif$0] and
repeated in the two later papers by Karamanev’s group, lies in, as theytloall,
effect of turbulence on the particle”. On page 1845 of their paperidanev &
Nikolov state:

"As Re increases above 130, a wake shedding begins. Periodic pulsations
of the fluid around the sphere are observed; hence the flow streanaieesot
axisymmetric in this region. This causes an imbalance of the forces applikd to
sphere in nonvertical direction. The main force (along with that of fluidosgg)
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opposing these nonvertical forces is that of mechanical inertia of therigath
particle. The main difference among a light and a heavy patrticle with the same
driving force ... is that the light particle is less inert because of the smallesitien
and therefore smaller mass

This explanation is not fully convincing. Firstly, it ignores the inertia of the
fluid surrounding the spheres. This may be thought of as adding a adidrib
$(p/ps)M U to the inertia/ U of the sphere. Her#! is its mass andl its vector
velocity. The fluid inertia is clearly not negligible. It may even be dominanttfer
light spheres considered here. Secondly, the phrase “the effecbofence” bears
with it a notion of randomness that is at odds with the phrase “periodic putsatio
of the fluid around the sphere”. Moreover, all the spheres studieddogirkanev
and colleagues are claimed to have risen along helical paths which suthge ghe
spheres have experienced a force of constant magnitude and diyecsatiated
with some underlying structure in the flow.

To examine the questions raised by the work of Karamanev’s group, vee ha
carried out further experiments on the behavior of light ascending splidres.
A brief description of the materials and methods is giver§ i, followed by a
discussion of the drag relation 3. Recordings of the trajectories of the light
spheres 4s/p =~ 0.02) have been analyzed to deduce the forces exerted by the
surrounding fluid. The results are presented # together with a simple model
for the drag experienced by the spheres. The paper ends with cionslus

4.2 Materials and methods

For the experiments we used a plexiglass tank with a height of 0.50 m andsa cro
section of 0.15 mx 0.15 m, filled with decarbonated tap water. The temperature
was maintained at a temperature of ZJ, giving a fluid density of 998 kg m?
and a kinematic viscosity of 0.98~% m? s~!. A total of 31 experiments with
light solid spheres were conducted. We used expanded-polystfEex®) épheres,
densityp, = 18.5 kg m~3, each with a different diameter in a range between 3.5
and 5.6 mm. In addition, to see any differences in their dynamics, experiments
with ascending and falling spheres with larger density were carried outserh
included spheres of the following materials and properties: polypropyjene:
850 kg m—3, d = 3.97 mm); low-density polyethylenep( = 925 kg m=3, d =
6.35 mm andd = 7.94 mm); polystyrene 4, = 1058 kg m~3, d = 3.97 mm);
polyamide-imide 6, = 1410 kg m~3, d = 3.18 mm andd = 3.97mm); and glass
(ps = 2472 kg m—3, d = 2.50 mm; p, = 2629 kg m~3, d = 4.00 mm).

With the help of mirrors two mutually perpendicular views of the moving
spheres were recorded with a Kodak CR 2000 camera at 500 or l&@@drper



34 CHAPTER 4. FREELY RISING LIGHT SOLID SPHERES

second. Standard image analysis techniques then resulted in a threeidirakns
reconstruction of the paths.

In a second series of experiments the water was heated from abovereThis
sulted in a small temperature gradient of 1.0 K/cm, which allows to use a Schlieren
optics technique to visualize the wakes of the spheres. This techniquerigias o
nally developed to obtain information on the wakes behind gas bubblesD&8].
tails of the improved set-up used here may be found in Veldéigs. [15].

4.3 The drag relation

The data for the dimensionless mean velo€ity, i.e. the Reynolds number

Re =17 (4.4)

v

and the drag coefficient as defined by equation (1),
Cp = 3lps/p — 1|gd/U7. (4.5)

have been compiled in Figure 4.1. The ‘light’ ascending sphergs (= 0.02)
are distinguished from the ‘heavy’ ascending sphedes € ps/p < 1.0) and the
data for settling spheregd/p > 1.0) by the use of the gray values. The error-
bars represent estimates of the uncertainty in the determination of the physica
parameters in each individual experiment. The solid curve is the relatiop (4.2
proposed by Turton & Levenspiel [14] and the dashed line is the relatiolight
spheresC'p = 0.95 for Re > 130, proposed by Karamanev & Nikolov [10].

The figure confirms what was observed by Karamanev’s group, naheglas
the density ratigps/p is sufficiently small, and the Reynolds number is sufficiently
high, there are significant deviations from the standard drag relationvevs,
the measured values of the drag coefficient for our light spheresradynolds
numbers much higher than 130, are lower than the proposed @gjue 0.95.

Jennyet al. [5] have recently shown by numerical analysis that the critical
Reynolds numberRe.,. at which the flow around a ‘free’ massless solid sphere
looses axial symmetry i205.8, a value that is only slightly lower than the well-
known critical valueRe.. = 211.9 for the flow around a fixed sphere (in other
words, an extremely heavy ‘free’ sphere). This suggests that thenkarev &
Nikolov’s ‘critical’ Reynolds number of 130 is merely the value of the Reygrold
number for which the Turton-Levenspiel relation gives (Re) = 0.95. So it
seems that the Karamanev-Nikolov relation is too simple.

Formally, the problem is characterized by two dimensionless parameters, whic
following Jennyet al.[5], may be chosen as the density ratig p and the Galileo
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10° 10°
Re

Figure 4.1: The drag coefficientCp, defined by (4.5), as a function of the Reynolds
numberRe, based on the mean velocity of rigg-. Solid curve: Turton-Levenspiel rela-
tion for heavy spheres(/p > 0.3). Dashed line: Karamanev-Nikolov relation for light
spheresd,/p < 0.3). Experimental data with small error bar close to relatibiurton-
Levenspiel in blackp,/p > 1.0, and light gray:0.3 < ps/p < 1.0. Experimental data
with large error bar (group &'p ~ 0.85): ps/p = 0.02.

number

o Vps/p—1lgd* (4.6)

14

Since(|ps/p — 1\gd)% can be considered as a velocity scale, the Galileo number
plays a similar dynamical role as the Reynolds number. With definition (4.5) one
can expres§’p in terms ofGG and Re

Cp = 3(G/Re)*. 4.7

The Karamanev-Nikolov relation faf'p (Re) should be replaced by family of
curves Cp(Re, ps/p) parameterized by the density rapig/p. Each curve coin-
cides with the standard drag curve up to some Reynolds number befiveen
205.8 and Re = 211.9, but then bends upwards. The data of Karamanev and co-
workers suggest that for very small density ratios and at sufficientty Reynolds

*Rather than takind?e andp,/p as parameters, one could also tdkeandG or G andps/p,
employing the relations (4.4) — (4.7) betwe@€n, Re, G, andps/p.
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Figure 4.2:Sketch of the parametrization of the drag curve with the idenatio. For a
density ratio of infinity (sphere held fixed) the drag curvthis standard drag curve Turton
& Levenspiel [14]. For density ratios other than infinity ttheag curve leaves the standard
drag curve betweeRe = 205.8 and211.9 [5].

numbers the curves approach, = 0.95. However, for larger density ratios the
curves would hardly deviate from the standard drag curve. Figurehb®ssa
sketch clarifying this idea.

The construction of the family of curve&sy (Re, ps/p) (by using spheres with
different diameters and densities) will require a considerable effod.fif$t steps
in a related spirit were taken by Karamaret\al.[9] when they used a collection of
spheres with different diameters, varied the Reynolds number for assphgiven
diameter by modifying its density, and thus obtained curveS'©fRe) parame-
terized by the sphere diameter. It may be noted that substantial deviatom#hie
proposalC’p = 0.95 for Re > 130 were also found in these experiments [8].

We note that the large scatter in our data for spheres with a density ratio of
approximately 0.02 raises doubts on the feasibility and the practical valueasf me
suring the full family of curves’p(Re, ps/p). The reason for this scatter will be
discussed in the next section.

4.4 The motion of the spheres

4.4.1 Trajectories followed by the spheres

The recordings of the motion of the spheres from two perpendicularviises
were used to construct the curves they traced out in three-dimensjata. sSix
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examples are shown in figure 4.3, all for a density ratiop = 0.02 and with
diameters ranging from 3.4 mm to 5.8 mm, so that the Galileo nurGbtyok
values between 615 and 1712. The Reynolds number based on the rfedty ve
of rise was found to increase from 889 to 1982; detailed information isgivehe
caption of the figure. The character of these trajectories is revealedohearsy by

a projection on a horizontal plane, i.e. as if the spheres were obseormabove.
These views are given in figure 4.4.

In figures 4.3 and 4.4 gray values are used to indicate the tangential velocity
of the spheres, the numbers next to the gray value giving the cormisgoralue
in m s~!. The velocity appears to have the highest values where the path is most
strongly curved. Ignoring the somewhat erratic path shown in dasen¢ varia-
tions in the velocity are largest when the path is close to a perfect zigzagh@e
gray value codes), and least when the path is nearly a pure spiral¢sdbllowing
a perfect helicoidal path do this at a constant velocity).

Karamanev and co-workers mention that in their experiments all the lightesphe
ascended along a spiral trajectory. In our experiments, even in reldeiate with
spheres of the same diameter, no preferred type of path was obs&aeld dif-
ferent path gave a different value for the mean rise velocity, which iseagon
for the large scatter in our data f6f, (Re). This result is a little puzzling. Kara-
manev’s group used a tank with a height of 1.90 m; hence, it is possibleuhat o
tank, with a height of 0.50 m, was too short, and that if the spheres wereeallow
to rise over a much longer distance they would eventually end-up followilg he
coidal paths. The true explanation may be more complicated, howevely enn
al. [6] have recently shown by numerical simulations that(fieps/p) parameter
space may be divided into ‘regimes’, with distinct characteristics of thenasytic
states’. These asymptotic states refer to non-transient paths, i.e., pspbei@s
that have been rising for a sufficiently long time. Our experiments cornesfm
positions in this parameter space which all lie well within the ‘chaotic regime’.
Chaotic trajectories are characterized by periods with vigorous exogrsiaan-
dom directions, interrupted by periods in which the motion is seemingly ‘smooth’
or ‘well-behaved’. Yet, with the exception of cadgerhaps, the examples shown
in figures 4.3 and 4.4 do not give the impression of being chaotic. It ¢demoled
out that, by coincidence, these examples represent such periodsndfelaavior,
but it is more likely that in this part of the chaotic regime various asymptotic states
co-exist, most of which characterized by smooth paths over considdesigiths
of time. Whatever is the case, using a tube of longer height should not make a
difference, and measurements of the mean velocity of rise and the asdalrizdge
coefficient would appear as poorly reproducible; unless perhagsages were
taken over a rather long time.
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(b)
0.273 0.298
0.269 20 0.284
0.264 / 0.270
0.260 0.257
0.255 0.243
0.251 0.230
0.314 0.347
0.304 0.332
0.204 0.316
0.284 0.301
0.275 0.286
0.265 0.270
0.370 0.373
0.348 0.359
0.327 0.345
0.305 0.331
0.283 0.316
0.261 0.302

Figure 4.3:Measured trajectories of spheres rising in water. The gaiyes represent the
tangential velocity of the spheres, with the numbers nettieéggray value codes giving the
corresponding value in ms. Spatial coordinates have been non-dimensionalized with
the diameter of the spheres. In all cagegp = 0.02. (@) d = 3.4 mm, G = 615; (b)

d =39mm,G = 756; () d = 4.3 mm,G = 875; (d) d = 4.8 mm, G = 1032; (e
d=54mm,G =1231; (f)d = 5.7 mm,G = 1335.
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plane. Further details are given in the caption of figure 4.3.

Figure 4.4:Projection of the six measured sphere trajectories of figuBeon the XY-
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4.4.2 Drag and lift forces
Determination

To determine the forces that have acted on the spheres as they tratieel @utves
exemplified in figures 4.3 and 4.4, it is helpful to use a Frenet refereanef i.e.

a moving orthogonal frame with the tangent to the curvae normal to the curve
n, and the binormab as unit vectors. Let(¢) denote the time-dependent position
vector of the center of the sphere with respect to a fixed referenoe faad let(¢)
measure the distance traveled along the curve from some arbitrary initialtinsta
Then the unit vectors are defined as

e
ds’ ~ds

dt

t: &

3 b=tx n, (48)

while the variation of these unit vectors along the curve is given by theeFren
Serret formulae

dt dn db

4 KN, 4s Kkt 4+ b, 4 ™ (4.9)
Herek is the curvature and is the torsion of the curve. An instructive, alternative
formulation is obtained on introducing the Darboux vector

d=—7t+ b, (4.10)

by which the Frenet-Serret formulae become

%:dxt, ((jj—]::dxn7 g—]::dxb. (4.11)
Hence, the variation of the unit vectors consists of a rotation around ttestas
neous tangent and binormal at rates andx, respectively.

Two closely related methods may now be used to determine the forces. Firstly,
with respect to a rectangular coordinate systeldY 7 fixed to the laboratory,
conservation of linear momentum of a body with madsis expressed by the

equation

dI

g = L (p/ps)y Mg +F, (4.12)
Herel is the virtual momentum of the body, i.e. the sum of the actual momentum
of the body and the impulse of the irrotational fluid motion that would result if the
motion of the body would be generated instantaneously from a state of cest. F

sphere the virtual momentum takes the simple form

I={1+3(p/ps)} MU, (4.13)
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whereU = (Ux, Uy, Uy) is the instantaneous velocity of the center of the sphere.
The first term on the right-hand side of (4.12) is the gravitational fordee “€x-
traneous’ forcer' is what Lighthill [12] calls ‘the vortex-flow force’, i.e. that part
of the force which the fluid exerts on the body due to the presence oiti@ul
vorticity’ in the flow. The precise form of this vortex-flow force does meted
to concern us here, but it may be noted that expressions in terms aftthal
vorticity distribution in the flow have been given by Kambe [7] and Howe §éh-
nections with earlier work of J. M. Burgers are discussed in a papeidshBuvel
& Hagmeijer [1]. The components of the vortex flow forCEx, Fy, Fz) may
be determined from the experimental data on the trajeat@fy and may subse-
quently be projected on the Frenet frame to obtdin F,,, F},). The drag force on
the sphere i¥p = — F;t and the lift force is given b¥; = F,,n + Fpb.

In an alternative method conservation of linear momentum of the body is ex-
pressed directly with respect to the Frenet frame, the motion of which isibedc
by the translational velocity

ds
= — 4.14
U=t (4.14)
of the origin, and the angular velocity
Q= gi (—7t + kb) (4.15)

about the instantaneous position of its axes. The momentum equation of the bod

now reads d
(§) FoxT=0- G/ MetF. (4.16)
F

where the first term on the left-hand side is the vector formed by the ratbsnfe
of the components of the virtual momentum of the body with respect to thetFrene
reference frame. In this case

dI 1 d’s

Hence, conservation of linear momentum of the body is described withatetgpe
a Frenet reference frame by the three equations

2
(1430l M S (1 (/o)) Mo =B, (418)

ds ) 2
{1+é(p/ps)}MH<dt> _{1_(p/ps)}Mgn:Fn; (419)

—{1—(p/ps)} M gy, = Fy. (4.20)
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Figure 4.5:The drag force experienced by the spheres; the unit of thevgilae code is
10~° N. Further details are given in the caption of figure 4.3.
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Figure 4.6: The magnitude of the lift force experienced by the spheies;unit of the

gray value code i$0~° N. Further details are given in the caption of figure 4.3.
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Figure 4.7:The components of the lift force acting on the spheres. Siokd component
in the direction of the normal to the curvé)(). Dashed line: component in the direction
of the binormal to the curver,). Further details as in the caption of figure 4.3.
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Both of the above approaches have been used to determine the drag and lif
forces experienced by the spheres, with virtually identical results. eTéespre-
sented in figures 4.5 and 4.6 in views from above of the same sphere tri@gcto
shown in figures 4.3 and 4.4. Figure 4.5 gives the drag force and figGrthe
magnitude(not the direction) of the lift force. In all cases the numbers next to the
gray value code give the corresponding value of the forc®ir® N. In addition,
time traces of the component$),, F;,) of the lift force are shown in figure 4.7,
negative values of, indicating that this component is directed away from the
center of curvature.

Interpretation

When comparing figures 4.4, 4.5, and 4.6 it is found that points of maximum
tangential velocity do not coincide with the points at which the drag force and
the lift force on the spheres take their largest value, an observationvitaite
discussed further below.

In figure 4.8 we present all relevant data, including path curvaturecsibn,
in one figure. We do this for two experiments: the spiraling sphere of easa(
the zigzagging sphere of cas®.(It is clear that for the spiral the motion is nearly
steady. For the zigzag the motion is highly unsteady and the time-shift between
velocity, lift and drag is clearly visible. At the point where the sphere gm$ise
zigzag centerline the normal and the binormal vectors rat&®e, resulting is a
sudden peak in the torsian The curvatures is smallest at the zigzag centerline
indicating that the path is almost straight. The last two figures give estimates for
the vortex angle) which will be introduced in the next paragraph.

For what concerns the lift forces, the origin of a force transversedaalitec-
tion of motion of the spheres is obviously thenerationof a vorticity distribution
in the fluid with a hydrodynamic impulse that has a component normal to the direc-
tion of the flow. Visualizations of the wakes of solid spheres by Veldaui. [15]
provided clear evidence of the continuous generation of such vorticityldisons
with a structure which in the near wake consists of two parallel vortex threadh
with a strong axial component of vorticity (in opposite directions). Zigzaggimd
spiralling bubbles also have such a ‘bifid wake’, as shown in de \éied. [16].
Similar vortex structures are found some distance behind the wings of danairp
At relatively low Reynolds numbers this bifid wake structure may extend a con
siderable distance downstream of the solid spheres (or bubbles). rElaglshmay
develop kinks and connect at fairly regularly spaced positions. Ahigeynolds
numbers the wake becomes unstable and even turbulent already closéodyhe
These instabilities may involve a vigorous redistribution of the vorticity already
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Figure 4.8: Data for cased) (figure @) and cased) (figure {)), respectively. From
top to bottom: Displacement in X and Y direction (solid andluzd line, respectively),
tangential velocityl;, lift in normal directionF,, , lift in binormal directionF;, dragF'p,
path curvature:, path torsionr, and vortex plane angke. Further details as in the caption
of figure 4.3.
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present in the flow, yet the generation of new vorticity, i.e., the addition dfdyy
dynamic impulse transverse to the direction of motion of the body, varies much
more smoothly, as evidenced by the results of the present experiments.

Another deduction made in de Vriesal.[16] and Veldhuist al.[15], namely,
that a pure zigzagging motion of a bubble or a solid sphere is accompanied by
a wake that consists of two vortex threads which merge at the centerline of th
zigzag and subsequently reappear with reversed direction of the vowtithiy the
threads, needs correction however. In figured.if(may be seen how the normal
component of the lift force on a zigzagging sphere suddenly jumps frposidve
value to a negative value, while the magnitude remains the same. The reason fo
this behavior is that the normal to the path in the Frenet reference framedsadir
towards the center of curvature. This forces the normal to changdidivethe
lift force does not change, it merely changes direction with respect todhaal
to the curve. In other words, along the zigzag path points of zero cuevdtunot
correspond to points where the lift force vanishes and changes directio

De Vrieset al. [16] and Veldhuiset al. [15] assumed that a pure zigzagging
motion of a bubble or a solid sphere is accompanied by a wake that condists of
vortex threads which merge at the centerline of the zigzag. At the instdrihtha
vortex threads merge no lift is generated, and since the curvature oathegn-
ishes at the centerline of the zigzag, this would imply a violation of equation)(4.19
because the first term on the left hand side and the term on the right icienare
zero. What really happens is that at the centerline of the zigzag lift isupesbto
balance the gravitational force in the direction normal to the zigzag path, thikile
merging of the threads and the vanishing of the lift occurs some distangdana
the centerline. Equation (4.19) shows that the value of the gravitatiorc the-
pends on the density ratio. A density ratio close to one implies a small gravitational
force, hence a small lift force. The experiments presented in Veldtis [15]
used solid spheres with a density close to that of the surrounding fluide srtbr
was difficult to detect. But it becomes clear immediately from figuree}, &nd
some hindsight should have been provided by inspection of figure 2 \éfids et
al. [16] of a zigzagging gas bubble.

4.4.3 The nature of the drag

A simple method to estimate the drag forces experienced by the spheres is to use
the Turton-Levenspiel relation (4.2) with the Reynolds number based oimthe
stantaneous velocity/ (¢) of the spheres; in other words, to write equation (4.18)
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Figure 4.9:Analysis of the drag forces acting on spheres. Solid curmesasured drag

force; dashed curves: viscous drag as given by the Turtemispiel relation with the

Reynolds number based on the instantaneous velocity; dakteed curves: estimates
of the lift induced drag; dotted curves: drag force as a coatimn of viscous drag and
lift-induced drag. Parameters as given in the caption oféigu3.
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Figure 4.10:Because of the continuous generation of new vorticity, Whilpse to the
body consists of two parallel vortex threads, each witha@gtaxial component of vorticity
but in opposite directions, a sphere experiences a vomexifirce I, at right angles to
a plane through the two vortex threads. This force may berdposed in a lift forcef',
normal to the direction of motion and a lift-induced dr&g,; opposite to the direction of
motion of the sphere.

as
{1+ 3(p/ps)} M Ogt] —{1—(p/ps)} M g, = $nd® pU* Cp(Re), (4.21)

where Re = Ud/v. This procedure is similar to that suggested by Lighthill in
[12]. It leads to rather unsatisfactory results, as may be seen frone figel, which
shows time-traces of both the actual drag (the solid curve) and the dcadated

in this way (the dashed curve): the actual drag is not only larger, boitshlews

a time-lag with respect to the calculated drag. A possibly remedy, propfmsed,
example, by Sarpkaya [13], is to modify the added mass coeﬁiéi@ﬁtps)M on

the grounds that this potential-flow concept needs adjustment to refleptebe
ence of vorticity in the flow and/or the action of viscosity. This approach ts no
appealing considering the nature of the vortex-flow force, as wasierglalearly

by Lighthill [12] and more recently by Leonard & Roshko [11].

A better alternative, we believe, is to view the expression on the right-hded s
of (4.21) as giving a good estimate of the viscous contribution to the voex-fl
force, while an estimate of the true drag follows from adding a (predominamtly
ertial) contribution, which in wing theory is referred to as the ‘lift-inducedglr
This contribution, as illustrated in figure 4.10, arises essentially becausestas-
taneous forcel', say, associated with the generation of a vorticity structure which
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near the body consists of two vortex threads with oppositely directed axitdtv

ity, as described ig 4.4.2, is not at right angles with the instantaneous direction of
motion of the sphere. To phrase it differently: The lift-induced drag desmause

the instantaneous direction of motion is not parallel to the plane through the two
threads at the place of origin of these threads. Hence, if the angle betheaee-
locity vector and that plane ig, then the true force that results from the generation
of the vortex threads is directed normal to that plane and has magnitude

1
(FTQL + Fb2)§/ cos 1.

It may be decomposed into components in the directioaadb with magnitudes
F,, andFy, respectively, which have been determined experimentally, and a further
component in the direction opposite to the tangewith magnitude

1
Fing = (F2 4+ F?)? tan ). (4.22)

We have tried to obtain information on the time-variation of the angfeom
flow visualizations made with our Schlieren-optics set-up. d{:gbe the angle
between the tangent to the trajectory and the horizontal plane, and similatly let
be the angle between the ‘vortex-plane’ and the horizontal plane. Hiea@ngle
1 between the velocity vector and the vortex-plane is given by

U =Py — . (4.23)

We now define the angle between the veetand the horizontaK'Y -plane as),,
see figure 4.11. The angles with the horizontal in projections oXtAeplane and
Y Z-plane are called,x andv,y, respectively. From elementary geometry one

then obtains
1 1 1

tan2 1/1,1 a tan? waX * tan?2 waY '

Two examples of Schlieren visualizations of the wakes of rising solid sphere
are shown in figure 4.12, in which we have indicated the anglesv., x, ¥1y, and
Yy the values ops/p andG are based on the measured temperature at the center
of the field-of-view. Obviously, this procedure can only yield rough esisaf
1Yy x andi,y, because the turbulence in the wake makes the pictures ‘blurry’ and
the wakes are highly ‘curved’. Furthermore, the angle best calculated when the
sphere crosses the centerline of the zigzag, where the path is (almagtjtsikaw
the vorticity structure is also straight, enabling a good prediction of the ahgle
For a typical Schlieren experiment this results in two or three measuremiatg po
per experiments for the anglg approximately one every 0.1 s. On using equa-
tions (4.23) and (4.24) we obtain= 26.1°+1 for the case shown in figure 4.(69)

(4.24)
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Figure 4.11:The angle between the vectarand the horizontaK'Y -plane is called),,.
The angles with the horizontal in projections on i&-plane and” Z-plane are), x and
Vay, respectively. Eq. (4.24) gives a relation between thesztangles.

and« = 37.5° + 1 for that in figure 4.1%b). From a whole range of visualizations
for values ofG between 600 and 1800 it appears that along the sphere trajectories
the angley) varies roughly betwee?5° to 38°. Given the uncertainty in determin-
ing the variation of) with time, and in order to have some definite value, we chose
a fixed angle) = 30° and used this to evaluate expression (4.22). This procedure
gives the dashed-dotted curves shown in figure 4.9 (which in this cass M
times the magnitude of the lift force). Finally, adding the lift-induced contribution
to the viscous contribution as estimated from the expression on the rightsitend

of (4.21), resulted in an estimate of the drag experienced by the sphatésihe-
sented in figure 4.9 as the dotted curves. The agreement with the measaged d
(the solid curves) turns out to be excellent. While this supports our vieweof th
mechanisms that govern the generation of flow-induced forces on tleeesplit

also suggests that any variations in the viscous contribution to the dragjaisso
with the building-up of the vorticity field by diffusion and convection are negléy

at high Reynolds numbers. This contrast the situation at low Reynolds msmbe
where they are important.

Note that we used the angleextracted from Schlieren experiments as input
for non-Schlieren experiments. Hence, the actual agigiemains unknown. If
we had evaluated the Schlieren experiments as detailed as the non-Sofkeren
periments, larger uncertainties would have emerged, as the image anafysi$ ca
clearly distinguish between the sphere and its wake. Therefore theegpdnstion
is not properly detected, resulting in errors in path, curvature, velauity,there-
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(b)

Figure 4.12: Schlieren visualizations of the wake of rising spheresyei from two
orthogonal directions. The solid curved line indicates pia¢h followed by the sphere
during the time interval between the moment of entering the field-of-view and the nrame
that the picture was taken. The angles; andy are the angles between the direction
of motion and the horizontal as observed in projections ety -plane andy” Z-plane;
similarly, 1, x and,y are the estimated angles between the horizontal and the plan
containing the two vortex thread&) ps/p = 0.02, d = 3.7 mm,G = 775, ¢t = 0.125 s;

(b) ps/p = 0.02,d = 5.8 mm,G = 1712, t = 0.110 s. With timet¢ the time passed from
the moment the sphere path is plotted.

fore the forces of the sphere. However, the previous discussioveshibat the use
of Schlieren data for non-Schlieren experiments is justified and proviadetient
agreement between theory and experiment.

4.5 Conclusions

In this paper we examined the proposal, given originally by Karamanev &Ibi{10],
to replace for spheres with a density ratig/p < 0.3 the standard drag relation by
Cp(Re) = 0.95 for Re > 130. Our experiments with spheres with/p = 0.02
showed a rather poor agreement with this proposal, consistent with euthaeit

is more appropriate to replace the standard drag curve by a seriesvef para-
meterized by the value ¢f;/p, each of these curves starting off from the standard
drag curve at a higher Reynolds number than 130, namely betiReea 205.8
andRe = 211.9. It was argued however, that for any individual case a substantial
difference may be found between the measured mean velocity and thdatedcu
from a balance between the net gravitational force and the mean drageasy



REFERENCES 53

these relations. The reason is that for Reynolds numbers beyond Zidlight
spheres do not rise along any preferred path.

By image analysis of stereoscopic recordings of the motion of the spheres
three-dimensional reconstructions of the trajectories were made, whitthitber
analysis yielded the drag and lift forces experienced by the spheresslpro-
posed that the drag force consists of (i) a viscous contribution that mestineated
from the standard drag curve by evaluating the Reynolds number usirg i
value of the velocity, and (ii) an inertial contribution that arises essentiallhéy
same mechanisms that cause the lift-induced drag on airplane wings. Estifnates o
both contributions, the latter using visualizations of the wakes of the splyves
a favorable agreement with the measurements.

There is obviously a connection of our study on freely rising spheresvatk
done on vortex-induced vibrations, as already exemplified by refeseioche pa-
pers of Lighthill [12], Leonard & Roshko [11] and Sarpkaya [13hi§ connection
is most intimate, perhaps, with studies of the motion of elastically mounted and
tethered spheres, an example of which is given by Govardhan & Willian&on [
Their description of the origin of the lift force on the spheres is essentia s
lar to what has been put forward by our group in the context of fraslyg gas
bubbles and solid spheres. It would be interesting to try to combine theitifubau
visualizations and DPIV measurements of the sphere wakes with the simple model
of the drag force given ifj 4.4.3. Given the great detail with which the vorticity
distributions was characterized, it may even be possible to estimate the flovtex-
forces experienced by the spheres on using the expressionsddeyiveambe [7]
and Howe [4].
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Chapter 5

Phase diagram for sphere
motion?

This paper presents the results of an experimental investigation aimestigt-v
ing some of the interesting conclusions of the numerical study by JenuSgkD
& Bouchet [3] concerning the instability and the transition of the motion of solid
spheres falling or ascending freely in a Newtonian fluid. The phenomemmvis
erned by two dimensionsless parameters: the Galileo nuband the ratio of
the density of the spheres to that of the surrounding fiuitp. Jenny, D&ek &
Bouchet showed that thg, ps/p) parameter space may be divided into regions
with distinct features of the trajectories followed eventually by the spheres after
their release from rest. The characteristics of these ‘regimes of moti®mea
scribed by Jenny, Biek & Bouchet, agree well with what was observed in our
experiments. However, flow visualizations of the wakes of the sphsires al
Schlieren optics technique, raise doubts about another conclusiomoyJBsek

& Bouchet, namely the absence of a bifid wake structure.

5.1 Introduction

Detailed numerical investigations (Kim & Pearlstein [7]; Natarajan & Acrid];
Johnson & Patel [4]; Ghidersa & Bek [1]; Lee [8]; Tomboulides & Orszag [17])
have revealed the various wake structures that may be found behilid s@tere
held fixed in a uniform flow, and have unraveled the mechanisms by whiske the

$C.H.J. Veldhuis & A. BiesheuvelAn experimental study of the regimes of motion of spheres
falling or ascending freely in a Newtonian flyisubmitted to Int. J. Multiphase Flow (2006)
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flows loose stability. Experiments by Orénes & Provansal [14] and Schouveiler
& Provansal [16] have confirmed many of the conclusions of these ncahstud-
ies. A related flow problem of practical importance, namely that of instability an
transition of the flow around solid spheres falling or ascending freely imf&n
nite fluid, has recently been analyzed by Jenny, Bouchet &Rj2] and Jenny,
DuSek & Bouchet [3] (referred to as JDB in what follows). Althougt8.2 of
JBD presents some ‘preliminary experimental observations’ of the motioreof th
spheres, and although numerous flow visualization studies of the wakaitiraj
spheres have already been published — the beautiful photographagairiy &
Bishop [9, 10] and Magarvey & MacLatchy [11] should be noted eigligc-, it
seems that an experimental verification of the results found Bels group has
not yet been given. Our paper aims at providing such a verification.

The problem is characterized by two nondimensional parameters, which may
chosen a;/p, the ratio of the density of the solid spheyg, to that of the sur-
rounding fluid,p, and the Galileo numbe¥, defined as

o= Vlps/p— lgd® (5.1)

14

Hered denotes the sphere diameteis the kinematic viscosity of the fluid, and

is the gravitational acceleration. The two parametérsnd p,/p together define

a parameter space. The numerical simulations of JDB show that the spdfeges
having been released from rest, reach different ‘asymptotic statesf:tthjecto-

ries eventually will have special characteristics that are typical of cergions of

the (G, ps/p) parameter space. A diagram indicating these ‘regimes’ is figure 29
of JDB, which is reproduced here in figure 5.1. JDB’s description df tfearac-
teristics may be summarized as follows:

For values of7 less than about 156 the spheres fall or ascend along a straight,
vertical path. The axisymmetric flow around the spheres becomes unstable a
value of G which weakly depends on the value of the density rati. For ex-
ample, Jenngt al. (2003) give critical values off = 155.8 for massless spheres,

G = 156.1 for ps/p = 0.5, andG = 159.3 for spheres that are inhibited to move
in a horizontal plane (which effectively means that the mass of the spisards
nite). At higher values than this first critical value Gf i.e. for parameter values
pertaining to the regime indicated by + in figure 5.1, the spheres move att@acbns
speed along a straight, oblique path; in others words, in a direction nuemdc-
ular to the horizontal plane. The flow around the spheres is steadypiubmly
planar-symmetric.

Ata second critical value aF, which depends much more strongly on the value
of ps/p, @ waviness of the wakes behind the spheres sets in. For parameter value
within the regions indicated in figure 5.1 byandx, the spheres follow a path that
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Figure 5.1: The different regimes of sphere trajectories({®, p,/p)-parameter space,
as identified by Jenny, [3ek & Bouchet [3]: +, steady oblique; oblique with periodic
fluctuations of low frequencyx, oblique with periodic fluctuations of high frequeney;
zigzag; [, chaotic, with the domain of chaotic and zigzag motion diéchby the dotted
line. (Reprinted from thdournal of Fluid Mechanids

in the mean is straight and oblique, but involves small periodic excursiorfsieca
plane through this oblique path. It appears that two dimensionless freigagh
defined as
f/
Vlps/p—1lg/d

with f’ the frequency in Hz, may be associated with these excursions: a ‘high’
frequencyf ~ 0.180 in regime x and a ‘low’ frequency).045 < f < 0.068 in
regimesx; the borderline between the two regimes is the density yatip ~ 2.5.

Actually, for ‘light’ spheres fs/p < 0.5, say) this ‘oblique and oscillating
regime’ of risex only pertains to a narrow range of Galileo humbers: above a third
critical value of G of approximately 175 the spheres ascend along a zigzag path,
with a characteristic fundamental frequenc923 < f < 0.035, while a strong
third harmonic is also present. This ‘zigzagging periodic regime’ is indicated in
figure 5.1 byo. The figure also shows that fot/p > 0.5 the oblique and oscil-
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lating regime extends to larger values@fand, interestingly, that the zigzagging
periodic motion isnot observed for spheres with densities larger than that of the
surrounding fluid g /p > 1.0).

Finally, in the regime indicated byl the sphere trajectories are ‘chaotic’. For
spheres with a density higher than that of the surrounding fluid this mearsitha
perposed on the seemingly smooth trajectories are small random excuvgibAs
out any apparent dominant frequency. This may be contrasted with daich
motion of spheres with a density less than that of the fluid, which is charaaderiz
by high velocity fluctuations for which the Fourier transforms of the horiaion
components show a definite peakfats 0.14. In addition, the wandering motion
may be interrupted by periods in which the spheres are zigzagging riggaflar
much lower frequency; JDB give an example (see their figure 25) in wihish
‘low’ frequency f =~ 0.038, i.e. comparable to the characteristic frequencies of the
zigzagging periodic regime>). JDB also point at the possibility that fpg/p < 1
there is a special subdomain of the chaotic regime: in the region delimited by the
dotted line in figure 5.1 special initial conditions (cf. JDB's figures 26, 2d 28)
may result also in a periodic zigzagging motion; but now the characteristic fre
guency is the above-mentioned ‘high’ valfies 0.14.

After a brief description irt 2 of the materials and methods used, we present
in § 3 an overview of the sphere trajectories that were observed in thei@qnds.

The values of the dimensionless parametey® andG cover most of the regimes
described above. A puzzling result of the numerical simulations by JDB is the
absence of a ‘bifid wake’ behind the spheres. Flow visualization stuglidalga-

rvey & Bishop [9, 10], Magarvey & MacLatchy [11] and, much moreaeity, by

our group (Veldhui®t al.[18]), have revealed the presence of two counter-rotating
vortices. Some new flow visualizations, which corroborate what wasdfouthe
earlier studies, are presentedid. The paper ends with conclusions.

5.2 Materials and methods

The experimental set-up used to study the trajectories of the spheresrispaxe
tube with height 220 cm and diameter 16 cm. At the bottom or the top (depending
on whether the spheres would rise or fall) it is equipped with a special eléwic
introduce the spheres. The measurement section (at the opposite emcdpsed

by a rectangular tank filled with tap water, to match the refraction index of the
perspex and to minimize optical distortions. A halogen lamp behind a diffusive
plate illuminates the measure section. By the use of mirrors a stereoscopic view
from the sides is obtained, which is recorded with a Kodak CR 2000 camera a
a frame rate of 500 or 1000 per second; image processing then yieldgdiee th
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Material d Ps % v ps/p G

Glass 247 2470 31.0 254 238005 17611
HDPE 6.35 630 51.0 6.34 0.5®9.03 166:15
Glass 247 2470 28.0 227 238205 19812
Torlon 3.96 1410 28.0 227 1.3®.04 19513
Glass 247 2470 26.0 2.13 286.05 212t13
HDPE 6.35 630 475 528 050.03 19817
HDPE 6.35 630 455 480 0.5D.03 21819

OTTmMmOoOO®>

Table 5.1:Values of the physical parameters and the dimensionlesbensnin the se-
ries of experiments A to G, where the capitals A to G corredponthe rectangular re-
gions within parameter space indicated in figure 5.2. Givertlze material of the spheres
(HDPE: high-density polyethylene; Torlon: polyamide-ita), their diameted in mm and
densityp, in kg m~3, the mass percentage of glycerine (%) of the mixtures aridkine-
matic viscosityr in 1075 m? s~1, the density ratiqs/p and the Galileo numbe as
defined in (5.1). The last two columns include estimates efuthcertainty of the given
values.

dimensional positions of the spheres. To ensure a good resolution theffiédalv
is limited to 15 cmx 15 cmx 27 cm.

The density rati; /p and the Galileo numbe®, as defined in equation (5.1)
were varied by using different fluids, tap water and mixtures of watergiyt
erine, and by using different spheres. The temperature was set °&. 2Zlhe
selection of results presented below is based on experiments glassssfhere
2.47 4+ 0.03 mm, p, = 2470 £ 30 kg m?), polyamide-imide spheres (Torlon:
d = 3.96 £ 0.01 mm, ps = 1410 £ 20 kg m~3), and with hollow spheres of high-
density poly-ethylene (HDPE = 6.35 4 0.01 mm, p, = 920 4 20 kg m—3). The
mass fraction of glycerine of the fluid ranged between 28 to 51 %. Thesiigco
of the fluids was calculated from this mass fraction using-taadbook of Chem-
istry and Physic§Weast [20]). This results in a possible error in the viscosity of
less than 3.5 %. Further, a Haake RS 600 rheometer was used to verdycties
culations. Detailed information on the values of the physical parameters and th
dimensionless numbers/p andG is given in table 1; here the labels A to G refer
to the rectangular regions of parameter space indicated in figure 5.2.
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Figure 5.2:The investigated regions of thé&, ps/p) parameter space. Information on
the values of the physical parameters and the dimensionlesbers is given in table 1.

The size of the rectangular regions corresponds to the a®thuncertainty in the values
of G andp,/p. The lines separating the parameter space are taken frora gl

In a second experiment the flow behind the spheres was visualized using a
Schlieren optics technique, which was originally developed to study thesnatke
gas bubbles (de Vries, Biesheuvel & van Wijngaarden [19]). Detaithefset-
up used in the present study are given in Veldratial. [18], a paper which also
includes a large number of Schlieren images of sphere wakes for deasiy r
close to unity .93 < ps/p < 1.05) and Galileo numbers between 306 and 732,
i.e. well within the chaotic regime. The Schlieren technique relies on creating a
slight temperature gradient in the fluid, of about 1.0 K<mby heating the fluid
from above. This, of course, limits the size of the tank: here we usedangedar
glass container of 15 cm 15 cmx 50 cm. The field of view is set by the diameters
of the lenses just behind and in front of the tank, in this case 10 cm. Tluiticors
were chosen such that in the center of the field of view the fluid properdies h
the values given in table 1. The visualizations of the wakes behind theespher
discussed irg 4 concern the regions of parameter space labelled B, C and F in
figure 5.2; however, the spheres may not yet have reached the ‘atgrafate’.
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5.3 The motion of the spheres

We will now discuss the various paths along which the spheres werevelsier

rise up or fall down the long perspex tube. It is convenient to do this usavgs
from above, which were reconstructed from the stereoscopic riegsrthade from

the sides. For each of the cases A to G a series of paths will be shownffthe le
column of figures 5.3, 5.4, and 5.6). The recorded paths have be&gdshif that
they all start at the same position in the figure; each path has been givenben

to simplify the discussion. Next to the views from above a ‘three-dimensional
reconstruction’ of one of the paths is shown (the right column of figurés®4,

and 5.6), thus providing an example that represents well the regime idefyfied
JDB.

5.3.1 Steady and oblique regime: Cases A and B

JDB find that for Galileo numbers a little higher than the critical value for the
primary instability, the spheres move steadily along a straight non-vertitial pa
Although there a few exceptions, the majority of the paths of the falling glass
spheres shown in figure 58( case A, is consistent with the predictions of JDB.
The slight curvature of the paths found in experiments 2, 4, and 9 mayeb®adu
slight non-sphericity of the particles. Presumably, the sudden chardgjesofion

in experiment 8 indicates that the sphere has hit the wall of the tank.

Most of the paths shown in figure 5¢3( case B, are also slightly curved, but
not to the extent that JDB’s prediction must be considered as falsifiedese ex-
periments hollow high-density poly-amide (HDPA) spheres were useda ded-
sity distribution that is not perfectly spherically symmetric may be the reason that
the paths are not straight. We have no explanation for the somewhat wpigtls
found in experiments 4 and 7. It may be noted that there is a resemblanceavith th
paths found in the experiments of case F, see figure)s.B8pllow HDPA spheres
were also used in that case, but with slightly larger diameter, which sugpasts
we may have made a mistake during the experiments.

The existence of the steady oblique regime, which even includes solidespher
of negligible mass, may be a little surprising for those who are more familiar with
the behavior of gas bubbles. The primary instability of the flow around gfaisles
eventually leads to a zigzagging or spiralling motion (something that was known
already to Leonardo da Vinci; cf. Prosperetti[15]). That this is natigobserved
for massless solid spheres suggests that the very different behagias bubbles
is due to their ability to deform easily.
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Figure 5.3: Left column: Top views of observed patrticle trajectorieshe steady and
oblique regime: §) case A, €) case B. Right column: 3D reconstruction of one of the
paths shown on the leftbf experiment 12,d) experiment 8. Distances have been nondi-
mensionalized by the diameters of the spheres.

5.3.2 Oblique and oscillating regime: Cases C and D

In the experiments of case C the same glass spheres were used as inetfie exp
ments of case A, but the fluid properties where adjusted - this changealttes v
of G, but hardly affects the value ¢f;/p - so that the parameter values would
correspond to what JDB specify as the periodic oblique regime. In facydlue

2.32 of the density ratigos/p in case C is just below 2.5, which JBD estimate
as the value which divides the periodic oblique regime into two parts: one with
high-frequency velocity fluctuationg{/p > 2.5) and another with low-frequency
velocity fluctuations fs/p < 2.5). The experiments of case D should correspond
to the low-frequency periodic oblique regime and were conducted with podie
imide (Torlon) spheres.
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Figure 5.4:Left column: Top views of observed particle trajectoriestia oblique and
oscillating regime: &) case C, ) case D. Right column: 3D reconstruction of one of
the paths shown on the leftb)( experiment 8, ) experiment 2. Distances have been
nondimensionalized by the diameters of the spheres.

For what concerns case C, most of trajectories shown in figure)5aé
oblique and deviate little from a straight line. Exceptions are the experiments 9
to 12, in which the strong curvature of the path is presumably due to interaction
with the wall. While a Fourier analysis of the components of the horizontal ve-
locity fluctuations in cases A and B does not yield anything significant, a similar
analysis of case C shows that dominant non-dimensional frequefoiespprox-
imately 0.06 and 0.19 (see figure mp(are clearly present. The first frequency
is within the range 00.045 < f < 0.068 mentioned by JDB as typical of the
low-frequency oblique and oscillating regime, while the second frequseeyns
to agree with the valu¢ ~ 0.18, which according to JDB characterizes the high-
frequency oblique and oscillating regime. Hence, it appears that theregsoa of
parameter space in which there is smooth transition between the two regions that
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Figure 5.5:Fourier transforms of one of the horizontal velocity comguis in the oblique
and oscillating regime.a) case C, experiment 3p) case D, experiment 1. The frequency
has been nondimensionalized as indicated by equation (5.2)

constitute the oblique and oscillating regime identified by JDB.

The trajectories observed for case D, with the polyamide-imide spheees, ar
presented in figure 5.d). Ignoring the minor deviations, these are indeed perfectly
straight oblique paths. Fourier analysis of one of the horizontal velooitypo-
nents in experiment 1 reveals (see figure ))& dominant non-dimensional fre-
qguency/f of approximately 0.245. This value is well outside the range.@f5 <
f < 0.068 mentioned by JDB. Peaks at frequencfes 0.25 are also found in the
horizontal velocity spectra of all the other experiments of case D. In sdriie0
spectra broad, but much smaller, peaks may be observed at frecubptieeen
0.06 and 0.14 (as in figure 51§, yet it must be concluded that the resemblance
with what was found by JDB is rather poor.

5.3.3 Zigzagging periodic and chaotic regime: Cases E, Fand G

In the experiments of case E the same glass spheres were used as i tagss &

and C. By adjusting the fluid properties a region of parameter space Veasesk
which according to JDB should lie at the border, but just within, the chaggjicre.
Some of the observed trajectories are shown in figureap.@hey differ from the
trajectories of case C (the oblique and oscillating regime) shown in figure)5.4(
by having much stronger variations in curvature. There is a clear reseceblédth

the trajectory shown in figure 20 of JDB, calculated figyp = 5 andG = 250;
however, because of the limited field of view it was not possible to detectdhe s
helicoidal motion visible in that figure. Fourier analysis of the components of
the projection of the velocity vector did not reveal the presence of anyirdmt
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Figure 5.6: Left column: Top views of observed patrticle trajectoriestie zigzagging
periodic regime and the chaotic regime) ¢ase E, €) case F,€) case G. Right column: 3D
reconstruction of one of the paths shown on the léjtekperiment 12,d) experiment 7,1}
experiment 11. Distances have been nondimensionalizeldebgiameters of the spheres.
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Figure 5.7:Fourier transforms of one of the horizontal velocity comguais. @) zigzag-
ging periodic regime: case F, experimentl®;¢haotic regime: case G, experiment 3. The
frequency has been nondimensionalized as indicated byieqys.2)

frequencies, and qualifying this regime of parameter space as chaatis sebe
justified.

The trajectories found in the experiments of cases F and G are shown in fig-
ures 5.6¢) and 5.6€). According to JDB'’s classification case F belongs to the
zigzagging periodic regime and case G to the chaotic regime. Yet, the trajectorie
have a similar appearance: in each of these cases a zigzagging is foasibo-
ally, but more often the spheres follow a jagged path. These experimergs we
conducted with hollow HDPE spheres, and, as was argued above,rtbigydsis-
tributions of many of these may not have been perfectly spherically symmigtric.
seems that the observations of case F agree with the discussioiOirf JDB,
where it is shown that slight inhomogeneities are sufficient to destroy taagig
ging periodic regime (cf. also their figure 31). Hence, in both cases FGand
the motion of the spheres must be considered as chaotic, the zigzag paths be
instances of the special character of the chaotic regime for ascendirgespas
identified by JDB (see their figures 25 and 27); namely, that the erratic motgn
be interrupted by short periods in which the spheres move along a zigzag.

Further support for these conclusions may be found by looking at thedfo
transform of a horizontal velocity component of a zigzagging particleh sas
shown in figure 5.7) for experiment 9 of case F, and in figure H)/{or experi-
ment 3 of case G. Both spectra show a large peak at a dimensionlessfcgguwf
about 0.052. We have no explanation for the appearance of this fregumit it is
certainly much higher than the fundamental frequency of the zigzaggimnodpe
regime, which according to JDB should lie within the rafige23 < f < 0.035.
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Figure 5.8:Stereoscopic Schlieren image of the wake of a rising spinetfesi steady and
oblique regime (case B). The picture was taken 0.331 seconds after the sphere had
entered completely the field of view.

It may be noted that also a further characteristic of the zigzagging peregiive,

i.e. a strong third harmonic, is absent from figure &)7(Instead, broad peaks
are observed at dimensionless frequencies of approximately 0.12 ie Bgif)

and 0.14 in figure 5.1, values that agree very well with the value oft= 0.14
mentioned by JDB as characteristic of the ‘zigzagging spots’ within the chaotic
trajectories.

To conclude this section, it may be noted that, on comparing figure)saéh
figures 5.6¢) and 5.6€), the behavior of the light, ascending, HDPE spheres dif-
fers considerably from that of the heavy, falling, glass spheres. stiiports the
conclusions of Karamanev & Nikolov [6] and Karamanev, Chavarie & &d§];
namely, that the motion of ‘light’ spheres (which they associate with a density ra
tio ps/p < 0.3) is truly different from that of heavy spheres; the upshot being
that the standard drag correlatioh, (Re), with the Reynolds numbeke and the
drag coefficienCC'p based on the mean vertical velocity, does not apply for these
light spheres. The motion of rising light solid spheres at high valuésludis been
studied in chapter 4.

5.4 The wakes of the spheres

It was already mentioned that for valuegoglightly higher than that for which the
axially symmetric flow around a gas bubble rising in clean water becomes ig)stab
the bubble will follow a zigzag or helicoidal path. The wake of such a bubble
consists of two counter-rotating vortices, as was established by the nahveoid
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Figure 5.9:(a) Stereoscopic Schlieren image of the wake of a falling sphethe oblique
and oscillating regime (case C). The dash-dotted line atdthe path followed by the
sphere after it completely entered the field of view 0.297 seconds earlier; this is also
the starting point of the line.)bf Enlarged view of a detail ofd).

of Mougin & Magnaudet [12] and the flow visualizations of de Vratsal. [19].
This behavior is quite different, as shown first by JDB and confirmedupytudy,
from that of solid spheres, which in the analogous situation rise or fallgaton
straight non-vertical path. JDB also find that the wakes behind thesielesudo
not have a bifid structure. Figure 5.8 shows a stereoscopic Schlieree whége
wake of a falling sphere in the steady and oblique regime (case B). Inpinion,
this picture proves that the wake consists of two counter-rotating vortjostdike
the wakes of zigzagging or spiralling bubbles and the wakes of solid spheid
fixed in a uniform flow (cf. Schouveiler & Provansal [16]); this coulicds the
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Figure 5.10:Schlieren images of the wake of a rising sphere in the ‘dgstt@igzagging
periodic regime (case F), showing how the double-threadskkvevolves into a hairpin-
like vortex structure. The pictures were takeseconds after the sphere had entered com-

pletely the field of view. 4) t = 0.081 s, b) t = 0.181 s, (C) t = 0.341 s.
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Figure 5.11: Stereoscopic Schlieren image of the wake of a rising sphetae ‘de-
stroyed’ zigzagging periodic regime (case F). The pictues vakert = 0.301 seconds
after the sphere had entered completely the field of vieweNte different character of
the wake as compared to that shown in figure 5.10.

findings of JDB.

A stereoscopic Schlieren image of the wake of a falling solid sphere in the
oblique and oscillating regime (case C) is shown in figuregy.9Here the path
followed by the sphere between the moment that it entered completely the field of
view and the moment that the picture was taken is visualized by the dash-dotted
yellow line. The wake does not coincide with the trajectory of the sphera&hwh
indicates that the oscillatory wake structure has evolved by a redistributitie o
vorticity generated by the sphere. The enlarged view of the wake jugidéie
sphere, figure 5.9), supports the description of this process, as given earlier by
Veldhuiset al. ([18]; see also their figure 3): the two counter-rotating vortices kink,
through which they locally get close together (see the region just belovetiterc
of figure 5.9p)), and subsequently the two threads of vorticity bend and connect
(see the structure near the top of the figure). The smooth sphere trajetfa-
ure 5.94) also suggests that this process of redistribution of wake vorticity hardly
affects the ‘overall’ motion of the spheres. Yet, it may lead to small fluctuations
in the velocity. This becomes evident by associating a ‘frequency’ with dkttem
observed in figure 5.8§. This frequency, made dimensionless in the manner of
equation (5.2), is estimated as 0.19; a value which indeed coincides with tre of
peaks in the Fourier spectrum of a horizontal velocity component, sushoam
in figure 5.54).

A further illustration of the evolution of the unstable bifid wake is given in
the Schlieren visualizations presented in figure 5.10. This concerns @ sisliial
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sphere in what JDB classify as the zigzagging periodic regime (casetfyhiich
here turned out to be chaotic, as a consequence of a lack of splsgrizadetry in
the density distribution of the hollow HDPE spheres that were used. Thestke

of rising spheres in this ‘destroyed’ zigzagging periodic regime may alge ha
somewhat different structure is exemplified in figure 5.11. Figures 5.d®drl
confirm what was mentioned earlier; namely, that the overall motion of thereph
is not affected significantly by the redistribution of the vorticity in the flow. éler
again, a dimensionless frequency may be associated with the wake paiterns:
value is estimated as between 0.11 and 0.15 for the wake shown in figure 5.10,
and between 0.15 and 0.19 for that in figure 5.11. For the case of figl@elts
values agrees well with the broad peak observed in the velocity spechronms

in figure 5.76). Unfortunately, the limited field of view did not allow us to look
for other details of the flow, which might explain the high peakfat: 0.05 in
figure 5.74).

5.5 Conclusions

To the best of our knowledge, the work of 88k and colleagues (JDB) is the first to
give a detailed analysis of the instabilities and transitions in the motion of spheres
moving freely under the action of gravity. Our experiments do not giverinée

tion on the mechanisms involved in these instabilities and transitions. However,
our observations agree very well with JDB’s description of the main feataf

the motion of the spheres and how these may be associated with various tegimes
regions of the G, ps/p) parameter space for which the motion of the spheres have
quite distinct characteristics. Discrepancies found in the experiments witdwho
high-density poly-ethylene spheres (case B) may presumably be attrtbuéack

of spherical symmetry in the density distribution of these spheres. Thispeded

by the fact that on using these spheres no evidence could be fouthe fexistence

of JDB’s zigzagging periodic regime. JDB show that a slight mismatch in the po-
sitions of the center of volume and the center of mass of the spheres desiioy
regime; the motion of the spheres is then best described as chaotic. Tées agr
with what was observed in our case F.

We also found some differences with JDB’s description of the ‘details’ ef th
motion of the spheres. These concern the values given by JDB of the aamin
frequencies that may be observed in the spectra of one of the horizefdalty
components. In particular, our experiments suggest that the obliquesailidto
ing regime, divided by JDB into two sub-regimes, one with a ‘low’ charadteris
frequency and one with a ‘*high’ characteristic frequency, must incluithérd sub-
regime (case C) in which both of these characteristic frequencies aenpré&ur-
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thermore, the observed velocity spectra of ascending spheres in thtéecglegime
(cases F and G) show broad peaks at a dimensionless frequencyreed &irly
well with the characteristic frequency mentioned by JDB; yet, both thesgrape
also have a distinct peak at a much lower frequerfcy(0.05), a phenomenon not
found by JDB.

Finally, our flow visualizations disprove a remarkable assertion of JDRBeha
the absence of a bifid wake behind the spheres. In all our pictures Keeooasists,
entirely or in part, of two counter-rotating vortices.

References

[1] GHIDERSA, B. & DUSEK, J. 2000 Breaking of axisymmetry and onset of
unsteadiness in the wake of a sph&rd=luid Mech.423 33-69.

[2] JENNY, M., BOUCHET, G. & DUSEK, J. 2003 Nonvertical ascension or fall
of a free sphere in a Newtonian fluighys. Fluidsl5, L9-L12.

[3] JENNY, M., DUSEK, J. & BOUCHET, G. 2004 Instabilities and transition of
a sphere falling or ascending freely in a Newtonian fldid=luid Mech.508
201-239.

[4] JOHNSON, T.A. & PATEL, V.C. 1999 Flow past a sphere up to a Reynolds
number of 300J. Fluid Mech.378 19-70.

[5] KARAMANEV, D.G., CHAVARIE, C. & MAYER, R.C. 1996 Dynamics of
the free rise of a light solid sphere in liquidiChE J.42, 1789-1792.

[6] KARAMANEV, D.G. & NikoLov, L.N. 1992 Free rising spheres do not obey
Newton’s law for free settlingAIChE J.38, 1843—-1846.

[7] Kim, |. & PEARLSTEIN, A.J. 1990 Stability of the flow past a sphete.
Fluid Mech.211, 73-93.

[8] LEE, S. 2000 A numerical study of the unsteady wake behind a sphere in a
uniform flow at moderate Reynolds humbefamput. Fluid29, 639-667.

[9] MAGARVEY, R.H. & BIsHOR R.L. 1961 Transition ranges for three-
dimensional wakesCan. J. Phys39, 1418-1422.

[10] MAGARVEY, R.H. & BisHOR R.L. 1961 Wakes in liquid-liquid systems.
Phys. Fluids4, 800-805.



REFERENCES 73

[11] MAGARVEY, R.H. & MAcCLATCHY, C.S. 1965 Vortices in sphere wakes.
Can. J. Phys43, 1649-1656.

[12] MOUGIN, G. & MAGNAUDET, J. 2002 Path instability of a rising bubble.
Phys. Rev. Letter@8, 014502.

[13] NATARAJAN, R. & ACRIVOS, A. 1993 The instability of the steady flow past
spheres and disks. Fluid Mech.254, 323-344.

[14] ORMIERES D. & PROVANSAL, M. 1999 Transition to turbulence in the
wake of a spheré?hys. Rev. LetB83, 80—83.

[15] PROSPERETT] A. 2004 BubblesPhys. Fluidsl6, 1852—-1865.

[16] SCHOUVEILER, L. & PROVANSAL, M. 2002 Self-sustained oscillations in
the wake of a spher@hys. Fluidsl4, 3846-3854.

[17] TOMBOULIDES, A.G. & ORzAG, S.A. 2000 Numerical investigation of
transitional and weak turbulent flow past a sphér&luid Mech.416, 45-73.

[18] VELDHuUIS, C.H.J., BESHEUVEL, A., VAN WIJNGAARDEN, L. & L OHSE,
D. 2005 Motion and wake structure of spherical particdgnlinearity 18,
C1-C8.

[19] DE VRIES, A.W.G., BIESHEUVEL, A. & VAN WIINGAARDEN, L. 2002
Notes on the path and wake of a gas bubble rising in pure wated. Mul-
tiphase Flow28, 1823-1835.

[20] WEAST, R.C. 1974Handbook of Chemistry and Physidsbth edn. CRC
Press.



74

REFERENCES



Chapter 6

General aspects of a single bubble
rising in water

This chapter presents the general features of a single bubibte {., < 6 mm),
rising in purified water. The smallest bubblel ( < 1.72 mm) are oblate ellipsoids
rising rectilinearly, whereas larger bubbles.(2 < d., < 2.80 mm) are oblate
ellipsoids in spiraling motion. For even larger bubble.( > 2.80 mm) shape
oscillations set in and the path of the bubbles is strongly influenced by tlpe sha
oscillations. Right at the onset of shape oscillatiofis = 2.80 mm) the bubble is
forced into a zigzagging motion.

Comparison of the rise velocity and shape of the bubble with earlier rekear
shows that the water used for the experiments is indeed pure, not coatathin
with surfactants.

This chapter serves as a general introduction to single bubble motioméie
two chapters provide more details on bubbles without and with shape osailiatio
respectively.

6.1 Introduction

The behavior of rising bubbles has been a research topic for mars; yégverman
& Morton [6] and later Hartunian & Sears [7] have conducted numerapsne
ments in several liquids with different bubble sizes. A nice overview obhab
motion from small to large volume equivalent diametB) is given by Lindt [9]
(Table 6.1).

75
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D, Re description
D.4 <0.08 Re <70 sphere, rectilinear path,
Cp as for solid spheres
0.08< D, <0.12 70< Re <400 sphere, rectilinear path,
Cp less than solid spheres
0.12< D,y <0.15  40G< Re <500  oblate spheroid,

0.15< D,, <0.48
0.48< D, <0.70
0.70< D., <1.66

D, >1.66

5006< Re <1100

1106 Re <1600

1606 Re <5000

Re >5000

rectilinear motion

oblate spheroid,

helical motion

irregular oblate spheroid,

almost rectilinear motion

transition from oblate spheroid to
spherical cap, almost rectilinear motion
spherical cap, rectilinear motion

Table 6.1:0verview of bubble motionD., given in cm. Taken from Lindt [9].
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Figure 6.1: The terminal rise velocity as function of the bubble diametad Etvos
number in water at 2. Taken from Cliftet al. [3].
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Lindt extracted these data from a report by Rosenberg (1950). tHerieeynolds
number is defined by

UvDeq
—
with U, the vertical rise velocity of the bubble andhe kinematic viscosity of the
water. Cliftet al. [3] provide an informative figure on the terminal rise velocity
as function of the bubble diameter andti#s number (Figure 6.1). Thedk/os
number is defined by

Re = (6.1)

_ ApDZg
-
with Ap the density difference between liquid and gathe gravitational acceler-
ation, ando the surface tension coefficient of the liquid-gas interface. Compared
to the data of Lindt, their figure is less detailed with respect to the differgimes
of bubble motion and shape, but it provides more information on the effestiro
factants in the water.

Small bubbles are spherical and rise rectilinearly. Thereafter, foeasong
diameter, bubbles first become oblate spheroids, followed by a bifurdatehe-
lical path. When shape oscillations are triggered the bubble returns to astalmo
rectilinear motion. Finally the bubble has the form of a spherical cap risicig re
tilinearly. We are interested in the intermediate regime in which the bubble path
deviates from rectilinear. What causes this deviation and what is the in#uzn
shape oscillations? This research focuses on bubbles with an eqtidi@ereter
between 1 and 6 millimeter. Hence, we start with fixed shaped bubbles in rectilin-
ear motion and end with bubbles performing shape oscillations.

Fo (6.2)

The dynamics of the bubble is strongly influenced by the properties of the flu
(density, viscosity, and surface tension). For smaller, spherical&siitscosity is
most important in determining the rise velocity of the bubble whereas, in the case
of ellipsoidal bubbles, surface tension is dominant. In the regime with ellipsoida
bubbles the Weber number is an important parameter providing the ratio lbetwee
fluid inertia and surface tension

We = —"— (6.3)

with p the density of the fluid. Moore [14, 15] calculated the Weber number as a
function of the deformation of a bubble at large, but finite, Reynolds nuntte
assumed potential flow around an oblate ellipsoidal bubble rising rectilindarly
his calculation he satisfied the balance between surface tension andgrerfesses
only at the stagnation point and at the intersection of the bubble surfacehsith
horizontal midplane. More recently Benjamin [2] improved this calculation using
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a virial method satisfying the boundary condition on the entire bubble surfac
section 6.3 the experimental results are compared with the relations of Muire a
Benjamin.

Bubble size and Reynolds number of the flow bifurcations are influenctteb
purity of the water. Bel Fdhila & Duineveld [1] showed that surface actom-
ponents attach to the bubble surface and migrate to the rear of the bubloee Ab
a certain critical concentration of surface active components the riseityette-
creases rapidly; for concentrations of the surface active componatitsabove
the critical concentration the rise velocity is equal to that of a solid sphewe. T
mechanisms cause this decrease in rise velocity: firstly, at low surféige-acn-
centration the front of the bubble is uncontaminated and the rear is cowéted
surface-active components, locally causing a drop in surface tenstandiffer-
ence in surface tension between front and rear creates a Mardagmnivhich op-
poses the surface flow, and increases the drag coefficient [10gn8ky, at higher
concentrations of the surface-active agents the entire bubble is dosleaaging
the boundary condition on the entire surface from no-shear to no-stiggasing
the drag on the bubble. We want to have reproducible results, study sédbiin
ities, the effect of shape oscillations, and compare our results with potéatial
theory. Therefore the bubble surface must satisfy a no-shear aopuodndition
and the use of purified water is necessary.

There is much discussion how to determine the purity of the water. Duineveld
[5] studied the effect of surfactants in the water. Comparison with eadgzarch
shows that in purified water the bubbles reach the highest rise veloatpisefig-
ure 6.1) and therefore flow bifurcations occur at higher Reynolds epusnblence,
comparison of these aspects in our experiments with those of Duineveldgive
good indication of the purity of the water.

In section 6.2 the materials and methods are discussed, followed by thé- exper
mental results in section 6.3; here the relation between bubble path, shdpe an
velocity will be discussed. Section 6.4 is left to conclusions.

6.2 Materials and methods

The experiments were conducted in a glass tank with a height of 0.50 m and a
cross-section of 0.15 m 0.15 m, filled with purified water with an electrical re-
sistance of 18.2 ikcm and less than 10 ppb organic particles. For comparison,
some experiments have been performed in tap water. The temperature was main
tained at 20°C, giving a fluid density of 998 kg m* and a kinematic viscosity

of 0.98107% m? s~1. With an optical setup of lenses and mirrors two mutually
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perpendicular views of the rising bubbles were recorded at 500 @ ft@thes per
second. More information on the experimental setup can be found in clZapte
After the bubble is produced (more details on the bubble generator cane f
in a paper by Ohl [16]), it is pushed through a capillary to measure its volume
Several capillaries were used depending on the desired bubble sr#ing in
a maximum volume error of 5% for the smallest bubbles dropping to 1% for the
largest bubbles.
All bubbles are recorded 40 cm after release. This is well within the steady
state regime of bubble motion, because the experiments showed no oveeabmc
of the rise velocity as is the case in the transient state. Furthermore, experime
with solid spheres, see [8] and also chapter 5, show that the transienissitzng
(larger than 100 sphere diameters) for small Reynolds number. But irafieeos
high Reynolds number the spheres reach their final stage of motion akéiadg
few sphere diameters. This can easily be understood, because tteabolayer
thicknesss depends on the transient tim¢s ~ +/vt) and the Reynolds number
(6 ~ D/v/Re). Therefore, the transient time for the boundary layer to fully de-
velop depends on the ratio of the diameter and the velotity (O/U). So, the
transient state is shorter for higher velocities.

Image analysis techniques result in a three-dimensional reconstructipatinf
shape, and orientation of the bubble. This provides us with information bn bu
ble velocity and aspect ratio, which is the ratio between the major and minor axis
of an oblate ellipsoidal bubble. In chapter 7 the image analysis techniqudsewill
discussed in more detail.

6.3 Experimental results

This section is divided in two parts: one on the path and the shape of thilartab

one on its rise velocity. In the figures the onset of path instability and shafze in
bility are indicated with thin vertical or horizontal lines. To test the reprodlityib

of the experiments two data sets with purified water are presented marked with
symbols '+ and '0’; in case of tap water the symbdlis used.

6.3.1 Bubble path and shape

Figure 6.24) shows the dependance of the aspect ratio of the pathx) on the
bubble diameter. The aspect ratio of the path is extracted from the top view on
the bubble path. A pure spiral has an aspect ratio of one, whereaga 2igs
an infinite aspect ratio; for rectilinearly rising bubbles no path aspectcatidoe
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Figure 6.2:(a) xpatn VersusD.y; (B) dpatn/Deq VErsusD,,. '+ 'and '0’ represent two
different data sets. The thin vertical lines indicate theetrof path instability (left line)
and shape instability (right line).

defined.

After the first path bifurcation from rectilinear to helical B, ~ 1.72 mm
the aspect ratio remains one. The aspect ratio of the path increasdy vetpeh
the shape oscillations set in &%, ~ 2.80 mm, the shape oscillations trigger a
zigzagging motion. Recall that the bubbles are all in their final stage of motion.
The literature (e.g. [12]) only mentions spiraling motion as final stage. Hénee
experiments show that shape oscillations drastically change this typicalibeha
For larger bubble sizes the zigzagging motion disappears and a large scHtee
aspect ratio remains. We are now in the regime where we have so-cati&ohgb
bubbles [10, 11]. More details on the effect of shape oscillations onubblé
motion will be discussed in chapter 8. The onset of shape oscillations feriex
ments in purified water and tap water is lower than the 4.8 mm found by Lindt [9].
Either Lindt performed experiments in even more contaminated water or he did
not resolve the shape oscillations from his experimental observatioreslaftbr
hypothesis is the most plausible, because the shape oscillatid@d{z) can only
be captured using high speed imaging, not available to him at that time.

Figure 6.2f) shows the maximal horizontal displacement of the bubb)|g;,,
as it can be observed in the reconstructed top vi&W {view), nondimensional-
ized with the equivalent diameter. For a bubble performing path oscillations this
displacement will be measured within one period of the path oscillation; it is de-
fined as

pat =/ [max(X) — min(X) + [max(¥) - mn(Y)]?,  (64)
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Figure 6.3:6,4t1/ D, versusD,,. Experiments in purified water (o and +) and tap water
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with X andY the horizontal displacements iXi- and Y -direction, respectively.
The nondimensionalized horizontal displacement is maximal for spiralingésibb
right after the path instability. Further increasing the bubble size dexdhse
relative amplitude. When shape oscillations set in the amplitude remains almost
constant; finally the motion will be almost rectilinear as was reported by Lifdt [9

It is well-known that surfactants increase the drag. Related to this theohtalz
displacement of bubbles rising in purified water and in tap water are shown in
figure 6.3. Bubbles in tap water have a larger horizontal displacemenbtitdates
rising in purified water. Energy is dissipated in horizontal motion, which linils w

a lower vertical rise velocity and therefore higher drag coefficientibbites rising

in tap water as will become clear from figure 6.5. For larger bubble diantbise
differences disappear. These observations agree with the findiQijf et al. (see
figure 6.1).

We saw that the bubble trajectory strongly depends on the bubble diameter; th
is also the case for the bubble aspect ratio. Figureapgt{ows an almost linear
increase of the aspect ratio of the bubbi¢ With increasing equivalent diameter
for rectilinearly rising bubbles. This agrees well with the data from Duilteve
[4] and potential flow theory of Moore [15] for rectilinearly rising bubkleThe
path instability sets in at an aspect ratio of 1.7, which is slightly smaller than 1.9
observed by Duineveld. At the onset of path instability our experimensailtse
start to deviate from Moore’s theory. The explanation is the lower risecitglof
non-rectilinearly rising bubbles which results in aspect ratios lower thedigied
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Figure 6.4: x versusD., (a) purified water, '+ and "o’ represent two different data
sets; b) tap water. 0o—o taken from Duineveld [4], — Moore’s theory.eTthin vertical
lines indicate the onset of path instability (left line) astthpe instability (right line). The
‘groups’ in figure p) are due to replacement of the capillary tube in the bubbhegeor
for a larger tube (at 2.5 and 4 mm).

by Moore’s theory. When shape oscillations set in at an aspect rati®ptfe
scatter of the aspect ratio increases.

The effect of surfactants can be seen in figurel§:4for bubbles rising in tap
water the aspect ratio is decreased in the entire range of bubble diarhetasse
of a lower surface tension and rise velocity of the bubble. Shape oscilagtant
at a slightly larger diameter{., ~ 3.0 mm). This is due to the lower aspect ratio;
shape oscillations only appear above a certain critical aspect ratio bhkluiam-
eter. The largest bubbles are so large that the bubble surface isyalrestdble at
small aspect ratios. When shape oscillations set in there is a large scateeast th
pect ratio; some bubbles seem to reach the aspect ratio of uncontaminilbéelsh
It is assumed that shape oscillations shed the surfactants, leaving artameo
nated surface. Obviously, shape oscillations are not always straugleo fully
‘clean’ the surface. The sudden drop in aspect ratio at a diametepahdmately
2.5 mm is due to a change in the experimental apparatus to generate the bubbles
Small bubbles are generated using a small capillary tube, whereas ldigedu
starting at approximately 2.5 mm diameter, are generated using a large capillary
The shape oscillations on the bubble are stronger in the case of a smallrgapilla
Therefore a bubble pushed through a small capillary is probably clehaera
bubble pushed through a large capillary; this results in a higher aspiectathe
smaller bubbles. This phenomenon can again be seen at an equivametatiaf
4 mm. Here the capillary has, again, been replaced by a larger capillaticeNo
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Figure 6.5:(a) U, versusD.,; (b) Cp versusRe. '+ ’'and 'o’ represent two different
data sets. Three lines are taken from [13]: — wateB®&C, - - water at20°C, - — -
water-glycerine mixture (10% by mass)2°C. o—o taken from Duineveld [4]. The thin
straight lines indicate the onset of path instability (leéspectively lower, line) and shape
instability (right, respectively upper, line).

that for the experiments in purified water these replacements of the capilbay tu
cannot be detected from the aspect ratio. Wu & Gharib [19] also rapthrie dif-
ference in bubble behavior depending on the way the bubble was ¢gthethey
assumed they performed experiments in purified water and thereforéudedc
that for one bubble size two behaviors would be possible: slow sphéxitdlles
and fast ellipsoidal bubbles. The present experiments suggest thgirtimbly
performed experiments in contaminated water; which was also suggesteshgy Y
Prosperetti & Takagi [20].

6.3.2 Bubble velocity

Figure 6.58) shows the dependance of the vertical rise velocity on the diameter
of the bubble. The data of Duineveld [4] and Maxworthy [13] are inctldéhe
highest rise velocity(, ~ 0.356 m s™!) is reached just before path instability
sets in and agrees well with the maximum velocity, (= 0.362 m s~!) measured

by Duineveld. The path instability sets in at an equivalent diameter of 1.72 mm,
this lies between the values of 1.62 mm determined by de Vries [18] and 1.81 mm
by Duineveld [4], who both used purified water. The difference coexbén the

data of de Vries is due to his use of a temperature gradient to visualize tlee wak
structures behind the bubbles. This leads to an averaged temperat8f€ph2||
above our 20C. The data of Maxworthy show that increasing the temperature de-
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creases the 'critical’ diameter at which the path instability occurs, and ises¢he
vertical rise velocity. The temperature used in our experiment¥JRi3 equal to

that at which Duineveld's experiments were done. We reach almost theveatine

cal rise velocity, but at a smaller bubble diameter. One might think this is céysed
the data analysis method which detects the bubble contour in subsequers.image
But previous comparison with data of Duineveld showed that a similar rela¢gion b
tween bubble diameter and aspect ratio is detected. Vibrations in the system migh
trigger the path instability; therefore the effect of a water tank damped wih an
without air dampers has been investigated to see if there was any change in th
position of the path instability. Although no change was detected our expggmen
might still possess more perturbations than the experiments of Duineveldx-His e
periments were conducted in a lab with a permanent concrete floor, vshauea

lab is situated in a temporary building where low frequency vibrations a#yhar
damped. A second explanation is the possibility of a large scale recirculation in
our water tank. After every experiment we waited 3 minutes for the watem@co

to rest, this might not be sufficient. Further research should investigatetnis
thoroughly.

Clift et al. showed that the drag experienced by the bubble is smallest in pure
water, which is also reflected by Maxworthy’s experiments (see figufa); this

can be related to the larger horizontal motion of the bubble in tap water (see fig
ure 6.3). Now consider the drag coefficient

_ 4 Deg
3027

Cp (6.5)

with g the gravitational acceleration of 9.81 m?s Figure 6.56) shows the de-
pendence of the drag coefficient on the Reynolds number. For rectifinéang
bubbles our data overlaps the data of Maxworthy and Duineveld. The minima in
the drag coefficient are equal. But for our spiraling bubbles the driaggsr than

in Duineveld’s experiments because his bubbles still rise rectilinearly up tib-a b
ble diameter of 1.82 mm.

Finally, we focus on the relation between the rise velocity and the shapeluiithe
ble. Figure 6.6 shows the dependence of the Weber number on the iagjpedihe
relations of Moore [15] and Benjamin [2] are also plotted. At small aspeas
there is a rather nice agreement between experiment and theory, mdreasing
aspect ratio the deviation from theory becomes larger. Duineveld [#ipbaschis
to overestimation of the deformation by theory. For identical equivalent deame
the aspect ratio found in the theory is larger than the aspect ratio foungbén-e
iments (see also figure 6.4); a larger aspect ratio increases the drageexpd
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Figure 6.6:Weber number versus aspect ratio’+ 'and 'o’ represent two different data
sets. 0—o Duineveld’s results [4], — Benjamin’s relation f2]Moore’s relation [15]. The
thin vertical lines indicate the onset of path instabiligf{line) and shape instability (right
line).

by the bubble (see also appendix B in chapter 7). In the experiments of Duin
eveld path instabilities set in at aspect ratios above 1.9 and Weber numigers la
than 3.3. Hence, all of Duineveld’s data shown here are in the rectilingsirhg
regime. Our experiments show a path instability at slightly lower values for the
aspect ratio and Weber number, 1.7 and 2.7, respectively. As sugdestae,

this might be due to vibrations in our experimental setup or the presencergea la
scale recirculation. After the onset of path instability, but before shapdaiions

set in, the experimental and theoretical data are in better agreement. Téis is r
markable because the difference between the aspect ratio of the bulbtdémi

and in experiments is even larger for non-rectilinear rising bubbles (pee6.4).
Hence, it seems that the overestimation of the deformation by theory, asstedg

by Duineveld [4], is not the only reason for the difference betweenrthaod ex-
periment. A better explanation can be given in terms of the minimum radius of
curvature of the bubble. For an oblate ellipsoid the radius of curvatueddslated

in appendix C of chapter 7. The minimum radius of curvatdig ,) for an oblate
ellipsoid is

/3

Rmin = Deqmv

(6.6)

and is located at the equator of the ellipsoid. The theory of Moore proddes
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Figure 6.7:Minimum radius of curvature?,,;,, versus aspect ratip. '+ 'and 'o’ repre-
sent two different data sets. The solid line is the relatibNoore. The thin vertical lines
indicate the onset of path instability (left line) and shapstability (right line).

relation between the equivalent diameter of the bubble and its aspect reio (s
also figure 6.4). Combining this relation with the relation for the minimum radius
of curvature gives the solid line in figure 6.7. At the equator of the bubtde th
velocity at its surface reaches a maximum, resulting in a low pressure, aéngle
pressure drop across the surface. This results in a small radius/afug which is
therefore seen to be related to the rise velocity of the bubble. Figure 6y shat
Moore’s theory predicts bubble shapes which are in good agreementesjtkct

to the minimum radius of curvature just before the onset of shape oscillalibas

is the reason why in figure 6.6 at these aspect ratios the theoretical dimessio
velocity (the Weber number) is in such good agreement with experimentsn Whe
shape oscillations set in, the agreement is less because Moore assunidalea b
of fixed shape. So, with respect to the rise velocity, agreement in thesrafliu
curvature at the equator of the bubble is more important than agreement in the
aspect ratio of the bubble.

6.4 Conclusion
This chapter dealt with general aspects of single bubbles rising in puvitéet.

The experiments clearly show the influence of shape oscillations on the métion o
the bubble; the bubble path changes from a stable spiral into a pure zgtag
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bubble size where shape oscillations set in. The relative horizontal cispént of

the bubble is maximal just before path instabilities set in. This results in thelarges
rise velocities, and therefore lowest drag, for these bubbles. Theesealocities

are as high as has been measured by Duineveld. The critical diamete torgét

of path instabilities in our experiments is slightly lower than Duineveld finds. This
might be caused by vibrations in our experimental setup which trigger thetse in
bilities or large scale recirculations in the water tank. This smaller critical diameter
gives rise to some deviation with respect to the results of Duineveld for itieatr
Weber numbers and aspect ratio for path and shape instabilities. Butrde ag
ments in rise velocity and drag experienced by the bubble justify the statersent th
experiments are conducted in purified water. Finally, it is shown that the minimum
radius of curvature of the bubble shape is a better measure of the rigétyelo

the bubble than the bubble aspect ratio.

In the next two chapters the behavior of rising bubbles will be examined in
more detail. We saw the important influence of shape oscillations on the bubble
dynamics. Therefore chapter 7 focusses on the bubbles without shkaiiations
and chapter 8 on the bubbles with shape oscillations.

References

[1] BEL FDHILA, R. & DUINEVELD, P.C. 1996 The effect of surfactant on the
rise of a spherical bubble at high Reynolds and Peclet numBbys. Fluids
8, 310-321.

[2] BENJAMIN, T.B. 1987 Hamiltonian theory for motion of bubbles in an infi-
nite liquid. J. Fluid Mech.181, 349-379.

[3] CLIFT, R., GRACE, J.R. & WEBER, M.E. 1978Bubbles, Drops, and Parti-
cles Academic Press Inc.

[4] DUINEVELD, P.C. 1994 Bouncing and coalescence of two bubbles in water.
PhD thesis, University of Twente, Enschede, the Netherlands.

[5] DUINEVELD, P.C. 1995 The rise velocity ans shape of bubbles in pure water
at high Reynolds numbers. Fluid Mech.292, 325-332.

[6] HABERMAN, W.L. & M ORTON, R.K. 1954 An experimental study of bub-
ble moving in liquids.Trans. ASCE87, 227-252.

[7] HARTUNIAN, R.A. & SEARS, W.R. 1957 On the instability of small gas
bubbles moving uniformly in various liquids. Fluid Mech.3, 27-47.



88 REFERENCES

[8] JENNY, M., DUSEK, J. & BOUCHET, G. 2004 Instabilities and transition of
a sphere falling or ascending freely in a Newtonian fldid=luid Mech.508
201-239.

[9] LINDT, J.T. 1972 On the periodic nature of the drag of a rising bulihem.
Eng. Sci27, 1775-1781.

[10] LuUNDE, K. & PERKINS, R.J. 1997 Observations on wakes behind spheroidal
bubbles and particles. , vol. FEDSM97, p. 3530.

[11] LuNDE, K. & PERKINS, R.J. 1998 Shape oscillations of rising bubbles.
Appl. Sci. Res58, 387-408.

[12] MAGNAUDET, J. & EAMES, I. 2000 The motion of high-Reynolds-number
bubbles in inhomogeneous flowsnnu. Rev. Fluid Mect82, 659-708.

[13] MAXWORTHY, T., GNANN, C., KURTEN, M. & DURST, F. 1996 Experi-
ments on the rise of air bubbles in clean viscous liquid§luid Mech.321,
421-441.

[14] MooORE, D.W. 1963 The boundary layer on a spherical gas buldblEluid
Mech.16, 161-176.

[15] MooRE, D.W. 1965 The velocity of rise of distorted gas bubbles in a liquid
of small viscocity.J. Fluid Mech.23, 749-766.

[16] OHL, C.D. 2000 Generator for single bubbles of controllable drev. of
Scien. Instr72, 252—-254.

[17] PALAPARTHI, R., PAPAGEORGIOU, D.T. & MALDARELLI, C. 2005 The-
ory and experiments on the stagnant cap regime in the motion of spherical
surfactants-laden bubblek.Fluid Mech.559, 1-44.

[18] DE VRIES, A.W.G. 2001 Path and wake of a rising bubble. PhD thesis, Uni-
versity of Twente, Enschede, the Netherlands.

[19] Wu, M. & GHARIB, M. 2002 Experimental studies on the shape and path of
small air bubbles rising in clean wat@&hys. Fluidsl4, L49-L52.

[20] YANG, B., PROSPERETT} A. & TAKAGI, S. 2003 The transient rise of a
bubble subject to shape or volume chandss. Fluidsl5, 2640-2648.



Chapter 7

Motion of oblate ellipsoidal
bubbles?

The previous chapter introduced the general aspects of single buldiierm In
this chapter we focus on oblate ellipsoidal bubbles that rise without shagk os
lations. Ellingsen & Risso [5] also studied bubble behavior in this regime.irThe
results will be compared with the results of our experiments.

A new mathematical method to calculate the bubble path, orientation and
shape from the experimental data is introduced. This is followed by the calcu-
lation of the forces and torques acting on the bubbles. A link will be made with
the vorticity structure behind the bubble and models for drag and lift expesin
by the bubbles will be introduced. It is shown that the measured dragjstsrof
a contribution related to viscous drag and a contribution induced instantasigo
by the lift force. It seems that variations in the viscous contribution to the drag
associated with the ‘building-up’ of the vorticity field by diffusion and cotigac
important at low Reynolds numbers, are negligible at high Reynolds eranb

7.1 Introduction

Ellingsen & Risso [5] discuss the features of the flow around an ellipsbidatle
of fixed shape rising in a quiescent liquid. They focus on a single bulb2l&anm
diameter, rising along a (flattened) helicoidal path. Several checksmede to
ensure that their water was pure. The terminal rise velocity of the bubblgasd

tadapted from: C.H.J. Veldhuis, A. Biesheuvel, & L. van Wijngaardéation of oblate ellip-
soidal bubblesto be submitted to J. Fluid Mech. (2007)

89
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indication for the purity of the water. Duineveld [4] performed experiments in
purified water; the maximum rise velocities he found are the largest reportieel
literature. Ellingsen & Risso’s results for the terminal rise velocity of the libb
were in good agreement with the results of Duineveld.

In their paper they introduce some important research questions:

"...Do the observed trajectories correspond to transitory stage or to a sthble
nal motion? Are shape oscillations present or not? What is the exacitaefin

of zigzag and helical paths?..They answer these questions for one bubble size;
obviously answering these questions for a broad range of bubble dizmeteld
give much more understanding, as will be shown in this chapter.

Ellingsen & Risso performed experiments with two high-speed cameras pro-
viding them with two side views of the bubble. They assumed the bubble to be
an oblate ellipsoid of constant shape with its minor axis aligned with its trajectory,
which has been confirmed by De Vries [12]. With respect to this consteaptes
and orientation the authors state:

"...owing to the constant relative orientation and shape of the bubble, the wake
instability is the only possible cause of the path oscillations observed hee. Th
prediction of the bubble motion thus requires taking into account the interactio
between the bubble and the unsteady wakater on the orientation of the wake
behind the bubble will be discussed in more detail, providing a way to predict th
forces acting of the bubble based on the wake structure behind it.

After an initial acceleration Ellingsen & Risso observe that the bubble starts
oscillating in an almost plane zigzag. The plane zigzag progressivelydrars
into a flattened helix, which is the final stable trajectory. They explain thisitrans
tion with two harmonic modes involved in the path oscillations. These modes have
the same frequency but arg’2 out of phase. The primary mode was saturated,
leading to a plane zigzag. The secondary mode was still increasing, |e¢ading
transition from a plane zigzag to a helical trajectory. When the amplitude of the
secondary mode is increasing the vertical velocity will decrease and firedlyme
constant for a pure spiral.

Besides the path of the bubble Ellingsen & Risso also studied the liquid velocity
induced by the bubble motion. They found two regions in the flow: potential flo
in front of and next to the bubble and a long wake behind it. The flow in tHeewa
consists of a quasi-steady part that spreads around the bubble taputioa part
consisting of vortices that are generated at the bubble rear. Thegmesare de-
scribed by Lunde & Perkins [7] and Beker [3]. About the wake vortices Ellingsen
& Risso say:"They have a strong influence on the flow just behind the bubble and
on the hydrodynamic force that acts on it. They are the origin of the bulaile p
oscillations that cause the increase of the drag coefficient. ... Nevershéihey
do not induce large liquid velocities and their influence on the intermediaté- an
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far-wake intensity is small. The velocity decay behind the bubble is predietéd w
by the axisymmetric wake around a rectilinear rising bubble provided thal loc
orientation of the wake is taken parallel to the bubble trajectory.”

In this chapter part of the work done by Ellingsen & Risso will be verifiedr- F
thermore, by calculating the actual forces and torques acting on the buhide
research will be extended in order to have a better understanding loietmbtion.

In section 7.2 a method to reconstruct the path, orientation and shape of the
bubble will be introduced; equations will be derived from which the origoriaand
shape of the bubble easily follow. Section 7.3 discusses the experimenhire
Here the forces and torques acting on the bubble expressed in a Fefarehce
frame will be calculated. Furthermore several features of the wake dehin
bubble will be discussed. In section 7.4 this wake will be linked to the forces
acting on the bubble and a model for lift and drag will be introduced. Se€tn
is left to conclusions. At the end of this chapter three appendices aralattiu
Appendix A discusses the derivation of the general equations of moti@idolate
forces and torques. This is follow by appendix B on the irrotational flovuiad
oblate spheroids. We end with appendix C on the calculation of the surface o
oblate spheroid.

7.2 Reconstruction of path, orientation and shape

The reconstruction of the bubble path, orientation, and shape haveadbaerby
several researchers with slightly different methods. Ellingsen & Rissmefon-
struct the bubble shape and orientation from two 2D projections of theldaubb
They assume an oblate ellipsoid with its minor axis along the path of the bubble.
The major axes are directly taken from the projections. They can onlycéxi@
minor axis of the bubble at those instances when the bubble velocity is ventical
one side view. The minor axis can then be extracted from the other sideAdew.
suming a bubble of constant volume with an oblate ellipsoidal shape they sepw th
can correctly calculate the projected minor axis in the side views [5, fig.33. Th
disadvantage of this method is, that they cannot continuously calculatettia ac
bubble shape; it is necessary for the bubble velocity to have a verticgdawent

in one of the side views.

Luther, Rensen & Guet [8] and de Vries [12] calculate the bubble shage
orientation from two 2D, mutually perpendicular side views (projections)nef o
bubble, which they assume to be an oblate ellipsoid. They use a mathematical
description of the bubble orientation based on a combination of rotation matrices
which connect the laboratory frame to a frame attached to the bubble. They it-
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Z

Figure 7.1:Two mutual perpendicular projections in a XYZ-laboratagrfie. The angles
are taken positive counterclockwise. The orientation efglie views of the bubble are
arbitrary.

eratively calculate the bubble shape and orientation by assuming a ceitbéile bu
shape and orientation and calculate the projections onto the two side views and
compare these projections with the real projections. By minimizing the error the
iteration will converge to the correct representation of the bubble.

In this section a method is introduced which is also based on a mathemati-
cal description with rotation matrices, but the set of equation are solveididyp
making this approach faster and more precise.

To reconstruct the bubble path, orientation and shape the digital imagedgato
by the high speed camera have to be processed. Each digital image cofrisists
2D, mutual perpendicular, side views (projections) of a single bubbkef{gere
7.1). For a sphere the shape is knosvpriori and the position of the center can
easily be extracted from the digital images. For a bubble only the position of the
center and hence its path is known.

It is well-known that the bubble can be assumed to be an oblate ellipsoid, with
major axes: andb (hencea = b) and minor axis: [4, 5, 13]. The aspect ratio of
the bubble is defined by

y=2>1 (7.1)
C

The bubble orientation is defined by the rotation angles, and~, which will be
explained in detail in figure 7.2. The projections of an ellipsoid are ellipsel2[5
From the two projections the axes and orientation angles of these ellipség can
extracted (see also figure 7.1):

e the long axedl; andds,

e the short axes; andes, and
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e the orientation angleg; and» between the major axis and the horizontal
plane.

The following discussion will give a procedure to reconstruct the shageorien-
tation of the bubble. The aim is to find the relations:

(d1,d27617€27¢17¢2) — (a7b7c)a7/87’y)7 (72)
with the restriction that = b = d; = do.

Consider an ellipsoid in an’y’2’-frame with axes:, b, andc along thex’-, 1/,
and z’-axis, respectively. The convention for the three rotation angle®,(and

~) can be found in figure 7.2. The first rotation, with anglés around the:-axis,
and results in the”y” z”-frame. Thec-axis is the symmetry axis; therefords set

to zero. The second rotation with angieand the third rotation with angle are
around they”-axis andz’-axis, resulting in the”’y"” 2"’ -frame andx"y"" 2" -
frame, respectively. Every rotation is governed by its unique rotation mRtyix
R,, andR,, respectively. Now denote the”” asX and the matrix product of
the three rotation matrices &. X is a vector in the laboratory frame; the coor-
dinates of this vector can be taken directly from the two 2D side views, becau
these are th& Z- and X Z-projections. The relation between a vector in a frame
with axes along the main axes of the ellipsoid and this vector in a frame fixed in
the laboratory can be written as

X = Rx/. (7.3)
For an oblate ellipsoid the rotation matiik is
cos 0 sin 8
R=R.RR. = sinasinf  cosa —sinacos( | . (7.4)

—sinffcosa sina  cosacos

7.2.1 Calculation of the orientation

The minor axes; » in the two side views (figure 7.1) coincide with the projections
of the real minor-axis. Therefore, the orientation of the mineaxis follows im-
mediately for the two orientation anglés andv». Consider a pointX., Y., Z.)

on the minor axis. The vector through this point and the origin expressed-in la
oratory frame coordinates Res, with e3 the unit vector inz’-direction. Hence,
this is the third column of the total rotation matifix

X, sin (3
Y., ;=< —sinacosf ;. (7.5)
Ze cos o cos 3
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cosy -siny O
R =[siny cosy O

0 0 1
cosp 0 sinf
R =0 1 0
-sinf 0 cosp
Z”’
1 0 0

‘x””=RXx”’ R =0 coso -sina
0 sina cosa

x"’=RRRx" == R-RRR,

Figure 7.2:Representation of the axes, angles, and rotation matrices.



7.3. EXPERIMENTAL RESULTS 95

The orientation angleg; and), are related to this point by
X. tanp

Y.
tany = 7~ —tana and tanis = Z. " csa (7.6)
From these equations the angteand can be calculated, resulting in
o= —; and B =tan"! (cost; tans). (7.7)

7.2.2 Calculation of the shape

For an oblate ellipsoid the axé@s andds in the two side views should be equal.
As long as this is true, the reconstruction is correct. For the two major axes it is
assumed that = d; andb = ds. In contradiction to what is sometimes stated
in the literature, the minoe-axis is not equal to the axes ande,. These axes
are projections of the oblate ellipsoid and therefore always larger tha,noost
equal to, the minoe-axis.

The coordinates of the highest point on the ellips@i, Y;, Z;) can be ex-
tracted from the two side views. This point is part of the ellipsoid and obeys th
equation for an ellipsoid in the'y’2'-frame:

2 2 2
€Ty Yt T
S+t =1 (7.8)
The axes: andb are known and the coordinatés;, y;, z;) in the body frame can
be derived from the coordinatéX’;, Y;, Z;) in the laboratory frame by:

x; = R7!1Xq. (7.9)

Substituting this into the equation for the ellipsoid gives the minor axis

The two projections of the bubble in the digital images are detected using h-thres
old for the gray value at which the bubble rim is located. This proceduraliis ¢
brated with the known bubble volume from the capillary after the bubble gaer
this leads to a maximum error of 1% in bubble volume. Now the bubble orientation
and shape can be reconstructed from the digital images the experimenttd eze
discussed in the next section.

7.3 Experimental results

Chapter 6 discussed the general features of single bubble motion. Feodatin
presented in that chapter six representative experiments are selebtedqUiva-
lent diameterD,,, aspect ratigy, path frequency,,.;», and Reynolds numbeke
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sub-figure Dey/mm x  Re  fpan/Hz description

€)] 1.6 1.7 555 - rectilinear path

(b) 1.8 1.8 640 4.7 spiral path

(© 1.9 1.8 654 4.7 spiral path

(d) 2.1 20 720 5.2 flattened spiral path

(e 2.6 21 818 5.7 flattened spiral path

) 2.8 2.2 859 6.7 zigzag path, shape oscillations

Table 7.1:0verview of experiments with oblate ellipsoidal bubblesgented in this chap-
ter. The sub-figure numbers refer to the numbers of the suipefigin sections 7.3.1 and
7.3.2. The last experiment shows an oscillating bubbletasdoction to the next chapter.

for these experiments are given in table 7.1. In the next section the budtble p
orientation and shape are discussed, followed by a section on the émdésrques
acting on these bubbles and a section on the wake structure behind the. Atisb
regime of fixed bubble shape is limited to smaller bubbles and the size of thetlarges
bubble presented in this chapter is just above the bubble size for theabsbeipe
oscillations.

7.3.1 Bubble path, orientation and shape

Figures 7.3 and 7.4 show the 3D paths and the top views of the bubble;tieslye
where the gray values indicate the magnitude of the tangential velocity otdebub
The smallest bubble rises in a straight path, while larger bubbles rise akpigah

with a constant velocity, which is maximal right after the path instability. The
horizontal amplitude of the bubble motion is at its maximum for a pure spiral (see
also figure 6.29)). For larger bubbles the path becomes flattened and the tangential
velocity becomes unsteady and decreases; this is a characteristic festbefore

the onset of shape oscillations. Right at the onset of shape oscillatiobatibée

rises along a zigzag path on which more details will be given in the next ahapte
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Figure 7.3:Measured trajectories of bubbles rising in water. The grlyes represent
the tangential velocity of the bubbles, with the numberd t@xhe codes giving the corre-
sponding value in ms'. Axes are non-dimensionalized with the equivalent diam&ee

table 7.1 for further details.
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Figure 7.4:Top views of bubbles rising in water. The gray values repretiee tangential
velocity of the bubbles, with the numbers next to the codeimgithe corresponding value
in m s~!. The * indicates the starting point of the trajectory. Sesear.1 for further
details.



7.3. EXPERIMENTAL RESULTS 99

(@) (b)
L — ——— ‘ 100
© 50 © 50
0 0.05 01 0.15 0 0.05 01 0.15
t/s t/s
() (d)
100 : : : 100

0.05 01 0.15 0.05 01 0.15

(e) (f)

100 ; ; ; ; 100

0.05 01 0.15 0.2 0.05 01 0.15 0.2
t/s t/s

Figure 7.5:— Angle between the tangent and the horizontal plane, - -edpgween the
minor axisc and the horizontal plane. Angles are given’inSee table 7.1 for further
details.

Figure 7.5 shows the angle between the tangent of the bubble trajectotiieand
horizontal plane, and the angle between the minor @gisd the horizontal plane.
The minor axis coincides with the tangent, which has also been found by Elfings
& Risso [5] and de Vries [12]. When the path instability sets in, the anglesdrop
from 9’ for rectilinear motion to approximately 88Further increase of the bub-
ble size slightly decreases the angle.
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Figure 7.6:Shape of the bubble:— major axis- - major axisb, - — - minor axisc. See

table 7.1 for further detalils.

Figure 7.6 presents the axesb andc of the reconstructed bubble. The two ma-
jor axisa andb are directly taken from the two major axés» in the two side
views. For convenience = d; andb = ds; so a breaking of axi-symmetry is
directly detected from figure 7.6. The two major axes are constant anddnde
equal, preserving axisymmetry as long as there are no shape oscillatimrs. i

a symmetry breaking at the onset of shape oscillatidnsA d», hencea # b) as
can be seen in figure 7#( Therefore the reconstruction of bubble orientation and
shape no longer holds in the regime of shape oscillations. Notice that all@xes
andc) exhibit a low amplitude frequency equal to twice the frequency of the path
oscillation. This is an artefact due to the bubbles moving in and out of fddhg o
digital camera.
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7.3.2 Forces and torques acting on bubbles

The equations of motion with respect to a fixed laboratory framéZ for a mass-
less bubble moving through a quiescent liquid are given by

% = —pVg+F, % =T. (7.10)
Herel is the linear impulse of the irrotational fluid motion that would result if the
motion of the bubble would be generated instantaneously from a state afimelst;
in this respectA is the angular impulse. The density of the liquid is givenghy
V' is the volume of the bubble, angthe gravitational acceleration. The 'extrane-
ous’ forceF and torquel are due to the presence of vorticity in the flow (see also
chapter 4). To solve the equations of motion it is helpful to use a Frerexerefe
frame with unit vectors, n, andb, already discussed in chapter 4. ls¢t) mea-
sure the distance travelled along the curve from some arbitrary initial ingthat.
translational velocity of the bubble in the Frenet frame is

ds

U=,-t=Ut 7.11
dt Y ( )

and the angular velocity

Q= 3? (—7t + kb) (7.12)

about the instantaneous position of its axes, withe torsion and: the curvature
of the curve. The momentum equations of the body now read

<d1) +QxI=—pVg+F, (7.13)

dt )

<d“4> +QXxA+UXI=T, (7.14)
dt ),

where the first terms on the left-hand sides are the vectors formed bytéseofa
change of the components of the virtual linear momentum, respectively angula
momentum, of the body with respect to the Frenet reference frame.

Figure 7.5 showed that the oblate ellipsoidal bubble is positioned with its minor
axis along the tangential vector. Therefore it follows that

I=AUt, (7.15)

whereA is an element of the added mass tensor and is given in Lamb [6, art.114]
for an oblate ellipsoid translating in the direction of its minor axis (see also (7.72)
in appendix B).

A= pVM,, (7.16)
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with .

(x* = 1) —cos™ I x !

cos~ Xt = (x2 = 1)2 /2

Herex = a/c, is the aspect ratio of the oblate ellipsoid. Remember that the bubble
is without mass and axisymmetric around its minor axis. Therefore the angular
impulse in the direction of the symmetry axis is zero. Hence, the angular impulse
is

M.(x) =

A=QUkDb, (7.17)

where( is an element of the added mass tensor for rotation. The elethént
given in Lamb [6, art.115] (see also (7.77) in appendix B).

Q= tpVR,, (7.18)
where
32 1)1 (0 — Bo)
el =X =) s e 1) /0 — (0 = o)
with
xreos™ Tl (X~ 1)2 R I
_ : —9 .
Bo(x) 0 1)% Y0(x) 202 1)}

In the Frenet reference frame the equations of motion reduce to

dU
Ag =Fo+oVa ARU? = Frp+ pVgn, Frp+pVa, =0, (7.19)

n:acwdﬂzn,Qﬁg:n. (7.20)

In (7.19), Fp is the component of the vortex force in the tangential direction; the
components in normal and bi-normal directions Bfg, and Fy, ;, respectively. In
(7.20)1}, T,,, andT;, are the components of the torque in the three directions of the
Frenet frame.

It should be mentioned that the reconstruction of these forces and sohaqse
also been done without assuming the bubble minor axis to coincide with the tan-
gent vector. Appendix A provides a detailed discussion of this secondodheth
The advantage is that small deviations from the alignment of the minor axis with
the tangent vector can be accounted for. After this more generalsteaotion it
turned out that the equations of motion from (7.19) and (7.20) indeedseptthe
dynamics of the bubble motion correctly.
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Figure 7.7:Lift force acting on the bubbles: £y, ,,, - - F1 . Notice the different scales
of the F,-axis. See table 7.1 for further details.

Lift and drag force

Figure 7.7 shows the components of the lift force acting on the bubble. For a
bubble rising straight (figure 7.d)) the lift force is zero. For a bubble rising in a
pure spiral (figures 7. 7§ and €)) the lift force is non-zero and constant. The pitch
and diameter of a pure spiral are constant; together with a constant veltmrity

the spiral this results in a constant lift force. For a flattened spiral @gydr7¢)

and €)) the lift force becomes unsteady. The lift force in the bi-normal direction
tends to zero, which is the case for a pure zigzag, because the bi-nisrthal
vector normal to the zigzag-plane. The same features are still visible idlze

with shape oscillations (figure 7))\ except for the high frequency oscillations
superimposed on the forces.

Figures 7.7 ) to (f) show negative lift forces in the bi-normal direction. The
reason for this is the counterclockwise trajectories compared to the clackais
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jectories in figures 7.70) and €) (see figure 7.4). In the case of a counterclockwise
motion the bi-normal vector points in the positive Z-direction, whereas in elock
wise direction the bi-normal vector points in the negative Z-direction.

Pure spiraling motion
The lift force in the normal and bi-normal direction are equal for the spigals
(see figures 7.70) and €)). This can also be concluded from the analysis of the
vortex structure behind the bubble which will be shown in section 7.4, wihere
vortex structure behind a spiraling bubble is analyzed in more detalil.

Consider a spiraling bubble with a constant velocity in the Z-direction, aleang
0 between the tangential direction and the horizotial-plane and a path radius
R. The path curvature and torsion are given by

cos? 6 sin 6 cos 6
= 7.21
— T=—F (7.21)
For a spiral the normal is positioned in a horizontal plane. Using (7.19}taand
experimental observation thety, ,,| = |F7, | leads to

R =

U? = pgV (7.22)

Acosf’
From appendix B it is known that can also be written agV’ M., with M, the
added mass factor, which is a function of the aspect rgtizence,

gR

U= 21—,
M cosf

(7.23)

In the case of a spiral the velocity can also be written as:

2 R2
U? = (27r)2ff”L (7.24)

cos26 ’

where f,,q41, is the path frequency. Combining (7.23) and (7.24) gives

(2m)2f2 . = gcosd

path = "L (7.25)

The added mass coefficiedf, hardly varies and is approximately one for these
bubbles. The possible spirals are limited to a select combination of path freque
angle with the horizontal plane and the radius of the spiral.
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Figure 7.8:Drag force acting on the bubbles. Notice the different scafahe Fp-axis.
See table 7.1 for further details.

Figure 7.8 shows the drag force acting on the bubble. The drag foneases with
increasing bubble diameter. For the flattened spiraling motion the drag ferce b
comes unsteady. For bubbles rising with shape oscillations the oscillationtysligh
change the bubble dynamics, but the general characteristics of nitlatoyy bub-
bles remain.
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Figure 7.9:- - Drag force, and — - lift force (left axis), and — tangential velocity (right
axis). See table 7.1 for further details (sub-figueg.(

Figure 7.9 shows the drag, lift, and velocity for the bubble from sub-didgrin

the previous figures. As is also the case for rising light spheres (sgxectd), the
maxima for the drag and lift acting on the bubble do not coincide with maxima in
the velocity at the outer positions of the bubble path; the drag force is qitasfe
with the velocity. Hence, the generally used drag relation

Fp~U? (7.26)

is not suitable. In section 7.4 the drag will be studied in more detail and a model
for it will be introduced that reflects this phase difference. For a moretigh
discussion of the lift force in the case of pure zigzagging motion and ontthgep
difference between lift and velocity the reader is referred to sectiondédling

with rising light spheres.
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Figure 7.10:Torque acting on the bubbles around the normal. Notice tifiereint scales
of theT,,-axis. See table 7.1 for further details.

The torque

Figure 7.10 shows the torque around the normal vector, which is zeaoréatilin-
early rising bubble. For the spiraling bubbles the torque is non-zero @mstant
and its sign depends on the clock- or counter-clockwise motion as was elsash
for the lift force in the bi-normal direction (see figure 7.7). For the bubisieg
along a flattened spiral the torque shows a peak right in between the maxihea of
bubble path; this can also be seen in figure 7&)2nhich shows the top view of
the bubble path with the torque around the normal indicated by gray valles. T
behavior for a flattened spiral can be explained by looking at (7.20)guuek 7.11,
which shows the curvaturesandr for the bubble from sub-figures. When the
path is almost rectilinear, right in between the maxima of the bubble path, the cur-
vaturex approaches zero and the torsiorrops rapidly. For a pure zigzag the
negative peak in the torsion will be infinite, because the normal vector vétiga
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Figure 7.11:Path curvature and torsion for cas®. (Figure @) shows curvatures and
figure (b) shows torsiorr. See table 7.1 for further details (sub-figuep (
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Figure 7.12:Top views of rising bubble for case)( The gray values represent the torque
in normal direction (figured)) and in bi-normal direction (figurebf), respectively. The
numbers next to the figure give the corresponding valuelfi—'2Nm. See table 7.1 for
further details (sub-figureg)).

sign instantly when the zigzagging bubble passes the zigzag centerlinsaifiee
feature is still present for a bubble with shape oscillations, where the maiion ¢
sists of a high frequency caused by shape oscillations and a low fregagnoal to
twice the path frequency (see figure 7.1).(

Figure 7.13 shows the torque around the bi-normal vector, which remainsas
long as the motion is steady. In figure 7.83he motion is unsteady; both the cur-
vature and the velocity of the bubble are maximal at the outer positions of the fla
tened spiraling motion. The torque is related to the time derivative of the produc
of curvature and velocity (see (7.20)); it is therefore maximal betweepdbiion

of maximum and minimum curvature, which can also be seen in figure B)12 (
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Figure 7.13:Torque acting on the bubbles around the bi-normal. Notieedifferent
scales of thd},-axis. See table 7.1 for further details.

For a bubble with shape oscillations (figure 7.1)3 this behavior is hardly visible;
now the torque is dominated by the oscillations.

This section showed the calculated 'extraneous’ forces and torgtiag ao the
bubbles, which are due to the vorticity in the flow. To understand the edfiect
this vorticity first the vorticity field behind the bubble is discussed in the next se
tion. Thereafter the relation between the vorticity field and the calculatedsasc

analyzed.
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sub-figure D.,/mm x  Re description

@ 1.3 1.4 546 rectilinear path

(b 15 1.5 614 spiral path

(© 2.0 1.6 797 spiral path

(d) 2.2 1.6 886 spiral path

(e 2.5 1.8 980 flattened spiral path

() 2.8 1.9 1062 flattened spiral, shape oscillations

Table 7.2:Overview of Schlieren experiments with oblate ellipsoidabbles. The sub-
figure numbers refer to the numbers of the sub-figures in@e¢tB.3. The last experiment
shows an oscillating bubble as introduction to the next tdrap

7.3.3 Bubble wake

The experiments described in the previous section have been done witiogt

the Schlieren technique. In this way there is a better control of the watpepro
ties. In this section the wake of the bubble is our main interest. In order tdizisua

the wake structures a constant vertical temperature gradient of 1.0 Kisnim-
posed on the water in the water tank. The temperature in the recorded field of
view (7 cm vertical distance) increases fronf €t the bottom to 3ZC at the top.

This results in a difference in the viscosity of the water between top and bottom
of approximately 14%. The density and surface tension are hardytedfey this
change in temperature; 0.20% for the density and 1.5% for the surfadertens
More details on the Schlieren technique can be found in chapter 2.

In this section the bubble wakes of six representative bubbles are shbwibub-

ble trajectories are more or less similar to the six bubbles presented in theysrevio
sections. The path instability sets in at an equivalent diameter of 1.5 mm, which is
lower than the 1.72 mm for the non-Schlieren experiments. The reasoridas th
the lower viscosity of the fluid as was also explained in chapter 6 with regpect
the experimental data of de Vries [12]. Shape oscillations set in at 2.8 mmh whic
is in agreement with the non-Schlieren experiments. This was expectedideec
the shape oscillations are driven by surface tension, which is haréigtedf by the
temperature gradient.
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Figure 7.14 shows the wake structures behind the bubble. The visibility oftke
strongly depends on the amount of distortion of the flow field. Theref@aevtke

is better visible for the larger bubbles. Increasing the temperature grawlight
solve this problem, but this is hard to establish, because the temperatuengisd
affected by the thermal conductivity of the system. The amount of hea¢ abjh
of the water tank was increased; this created a layer of warm water oftadioms
stant temperature at the top of the water tank, but hardly affected the ttomeger
gradient in the measurement section. Furthermore, a higher temperadiengr
changes the water properties even more, leading to larger deviations welase

ity compared to experiments without the use of Schlieren. De Vries perfoamed
calculation to investigate the effect of the temperature gradient on the s ve
ity of the bubble [12, Ch. 3§ 3, p. 10-23]. He used an empirical relation for the
temperature dependent viscosity and solved the equations of motion witthlsevic
expression for the drag on the bubble (see also (7.80) in appendixeB3héived
that not only the increase of the temperature influenced the rise velocitygtha
drop in viscosity, but also the temperature gradient. In his calculation he $edula
a 2 mm diameter bubble with an initial velocity of 0.328 Thsn a temperature
field starting at 20C with a gradient of 1.1 Kcm'. The terminal rise velocity was
6% higher than the rise velocity for the case with a constant temperature’@f. 28

Figure 7.14 shows that the straight rising bubbles have an axisymmetric Wade
wake becomes double-threaded when the path instability sets in. As stabegl, bef
the shape oscillations set in at an equivalent diameter of 2.8 mm. Already at an
equivalent diameter of 2.5 mm the wake becomes unstable at the outer positions
of the somewhat flattened bubble path; the shape of the bubble is not ogtlen

by these instabilities in the wake. The presence of wake oscillations withapésh
oscillations suggests that the wake oscillations trigger shape oscillationstiven
bubbles are large enough, and not vice versa.



112 CHAPTER 7. MOTION OF OBLATE ELLIPSOIDAL BUBBLES

(b)

(©) (d)

Figure 7.14:Stereoscopic Schlieren images of bubbles with their patash-dotted line
and bubble shape: solid line. Images are recorded with @&t0es/s. The bubble shapes
are plotted every 10 frames, giving a time interval of 0.64tuMeen the bubble shapes.
The elapsed time starting from the first bubble shape is atéitin the upper left corner.
The Reynolds numbers ara) (546, ©) 614, €) 797, d) 886, €) 980, and {) 1062. See
table 7.2 for further details.
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7.4 A model for lift and drag

This section deals with the influence of the vorticity field behind the bubble on the

bubble motion. What is the relation between the structure and orientation of the
vorticity field and the vortex flow forces acting on the bubble? In section 7.3.2

the vortex flow forces have been identified. Section 7.3.3 provided us witaa

view on the vorticity structure behind the bubble. With this knowledge a model is

constructed for the vorticity behind the bubble and several aspects sjiraeto

the generated forces are explained.

7.4.1 \Vorticity structure behind the bubble

The Schlieren pictures reveal a double-threaded wake behind bubblgsg in

a pure spiral. It is well-known that these two counter-rotating vortex teregve

rise to a force perpendicular to a local plane immediately behind the bubble in
which the two vortex threads are positioned, the vortex plane [e.g. 9].aWwdos

cal plane’ because the vortex threads are curved and only locally a fdagent

to these vortex threads can be defined. To calculate the contribution ajrde f

in the three main directions (tangential, normal and bi-normal) the orientation of
the vortex plane and the strength of the vortex threads is necessargfdrbehe
Schlieren images will be studied in more detail.

Consider a double-threaded wake behind a bubble. Depending ondlee s
tween the vortex plane and the line of sight the distance between the two vortex
threads varies between a maximum distance and zero (then the two vorsedsthre
are overlapping in the particular view). Figure 7.15 shows a sequeribeeefim-
ages (A to C) of one side view of a spiraling bubble with two vortex threadsrac
tuated by white lines. The sequence starts with a maximum distance between the
two vortex threads and ends with zero distance. The middle image is taken when
the bubble reached its outer position of the spiraling path in this side view. fthe le
and right images are tak@path oscillation period before and after, respectively.
Now consider figure 7.16, which gives a schematic top view on the bubble an
its path. The positions A, B, and C are marked and the vortex threadspaes re
sented as circles or dots, depending on the clock or counter clockvié@noof
the vortex thread. The images of figure 7.15 were takén4idirection. Recalling
that in position A the distance between the two vortex threads was maximal and in
position C zero, it is seen that the vortex plane is orientated under an@angle
45° with the bi-normal.
The normal vector for a pure spiral is oriented in a horizontal plane tisvar
the center of the spiral; the bi-normal vector is orientated along the spirellogre.
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a

Figure 7.15:Spiraling bubble; leftimage: largest distance betweerexahreads, middle
image: smaller distance, right image: zero distance. Tlsitipos of the bubble in the
images agree with positions A, B, and C in figure 7.16, re$gagt The middle image

is taken when the bubble reached its outer position of thalgpg path in this side view.
The left and right images are takérpath oscillation period before and after, respectively.
The dash-dotted line marks the path of the bubble. The winiés lare accentuated vortex

threads.

pure spiral

XZ- V|ew @ @/\Iﬁ

= bubble with vortex plane
with two vortex threads

YZ-view

Figure 7.16:Sketch top view spiraling bubble. The positions A, B, and @espond to
the images in figure 7.15 from left to right, respectivelygiRiimage: angle); between
the vortex plane and the bi-normal.
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Because the angtg, is 45, the lift force in normal and bi-normal direction should
be equal for a pure spiral. Recall figure 76§ &nd €), which show that the lift
forces in normal and bi-normal direction are indeed equal, confirmingtiberoa-
tions with respect to the orientation of the two vortex threads.

The second orientation angle of the vortex planés an angle between the vortex
plane and the tangential direction. Although a direct link can be made with the
analysis of the vortex structure behind rising light spheres in chaptee 4ré&sent
case differs in two aspectq) (he bubble path is a spiral instead of more flattened
spirals/zigzags for the rising spheres) the bubble wake consists of two stable
vortex threads instead of the unstable, turbulent sphere wake. oreetbe ap-
proach to calculate the orientation angle is slightly different. Recall that, in
chapter 4, this angle is called,.

The angleyp, of the vortex plane with the tangent vector can be extracted from
the last image of figure 7.15 in which the two vortex threads overlap. So in the
Y Z-view we have two overlapping vortex threads and in ig-view the dis-
tance between the two threads is maximal. Hence the normal vector of the vortex
plane has no component i-direction and thé - and Z-component can easily be
extracted from thé& Z-view. Knowing the normal vector to the vortex plane, we
can easily calculate the angle between the vortex plane and the tangemt gcto
simply projecting the tangent vector onto the vortex plane. The anglean be
calculated from

t-tp = [t][tp|cos o, (7.27)

wheret,, is the projection of the tangent vector onto the vortex plane. The angle
1y is 210,
7.4.2 Generated lift

Consider a vorticity field consisting df closed vortex tubes. The force generated
on the bubble by this vorticity field is [2]

d
F=—p (%: I'n / nidAN> , (7.28)

wherelI'y is the circulation andf n;dAp is the projected area in the i-direction

of vortex tubeN. Now assume the two vortex threads, which are connected at the
moment they are generated, to resemble one closed vortex tube. Thealadegé

of the projected area in the direction normal to the vortex plane is

d / ndAy = Udt, (7.29)
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with [ the distance between the vortex threads, which we assume to be condtant an
U is the velocity of the bubble in the direction of the vortex plane. Hence

U = U cos o, (7.30)

with U; the tangential velocity of the bubble. The vortex flow force induced by two
vortex threads is

Fq = piI'lU; cos . (7.312)

The circulationl” can be estimated from the velocity induced by one vortex thread
in the other vortex thread. Van Wijngaarden [14] studied the effect dinga
vortices behind bubbles on the bubble velocity. He gives an expressidhd
velocity induced by one vortex thread in the other, perpendicular to thexvor
plane, as function of the distance x behind the bubble (his expressi@®))(3.1

U= (14145 (7.32)
P~ 4 x2 ) '

From the Schlieren images the induced velocity can be extracted from the motion
of the vortex threads. Here we focus on the motion of the vortex threade so
diameters behind the bubble. The distance between the vortex threadsdag-app
imately half the bubble diameter. Typicallyjx is approximately 0.02 and the
induced velocity becomes

r

~— 7.33
Us o2ml’ ( )

as if the two vortex threads were infinite at both ends. Hence,
I' = 27Uyl (7.34)

where the distancéand the self-induced velocity/; can be extracted from the
Schlieren images. For a spiraling bubblelod mm diameter typical values are
[ =0.52 mm and/; =3.0 cm/s, which is in nice agreement with De Vries [12],
who gives 0.6 mm and 3.0 cm/s for a bubble of 2.0 mm diameter.

The lift force acting on the bubble is

Fy = Fq coss. (7.35)

Figure 7.17 shows the reconstructed lift force and the modelled lift farce f
spiraling bubble: the agreement is clear.
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Figure 7.17:— measured lift, - - modelled lift. See table 7.1 for furthetalls (sub-
figure )).

7.4.3 Lift-induced drag

The drag experienced by the bubble is related to vorticity in the boundaay ddy
the bubble, creating a viscous contribution to the drag. Furthermore ttestie-
ity, consisting of the two vortex threads, can create a so-called 'lift-indiud@g.
Because the angle, is non-zero the vortex flow force induced by the two vortex
threads will have a component in tangential direction, this is the 'lift-indudeat)
(recall the discussion in chapter 4 on this subject). The lift-induced daaghe
written as

Fd,ind = FQ COS wg. (736)

The two vortex threads will also induce a velocity in the boundary layer; hiagg
an influence on the vorticity in the boundary layer and therefore on thewssc
contribution to the drag. Typical velocities in the boundary layer are of ttero
of the bubble velocity. The previous section, on generated lift, showedhba
velocities induced by the two vortex threads are of the order of 10% ofuthklé®
velocity. Therefore it is assumed that the contribution of the velocity indbged
the vortex threads in the boundary layer are negligible. The viscoustmatitn is
modelled as if the boundary layer is equal to the boundary layer arowstibin-
early rising bubble. The viscous drag can now be modelled with Moora{ [d0]
and is given by a combination of (7.80), (7.81) and (7.83) in appendix B

Fp yise = 6mpuU?DeyG(X) (7.37)

with
2 _ 1y (X =2)sec™ () +VX> — 1)

(x2 sec™!(x) — V/X* — 1)2
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Figure 7.18: Drag force acting on the bubbles. — measured drag, - - matidiiag,
- — - lift-induced drag, and- viscous drag. Notice the different scales of fiig-axis. See
table 7.1 for further details.

The total drag on the bubble can be modelled with
FD = FD,visc + FD,ind- (738)

The same approach can be used to estimate the drag on larger bubblesicfor

the bubbles rise along more flattened spirals and thus the motion is unsteady. Th
Schlieren experiments showed that the anglearies from 21 to 24 which gives

rise to a maximal difference of 2% in the lift-induced drag. Because the gake
not visualized in the non-Schlieren experiments the atiglies set to 22.5.

Figure 7.18 shows the modelled drag (dashed lines) and its components the in-
duced drag (dash-dotted line) and the viscous drag (dotted line). Theragnt

with the measured drag (the solid line) turns out to be rather good, evehefor
bubble with shape oscillations. For the purely spiraling bubbles the induagd d
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is approximately 20% of the modelled drag. The induced drag becomes more im-
portant when the bubble rises in an unsteady motion, because then theckt fo
hence the induced drag, has large-amplitude oscillations.

While this approach to drag supports the view of the mechanisms that gov-
ern the generation of flow-induced forces on the bubbles, it also stgtdeat any
variations in the viscous contribution to the drag associated with the ‘buildihg-u
of the vorticity field by diffusion and convection, and important at low Régao
numbers, are negligible at high Reynolds numbers, as was also the céightfo
rising spheres (see chapter 4).

7.5 Conclusion

In this chapter we focussed on rising bubbles of fixed shape. Thedsibibe
with their minor axis aligned with the path, as was also observed by Ellingsen &
Risso [5]. Right after the onset of path instability the bubbles rise in a ppiral,s
whereas for somewhat larger bubbles the path becomes flattened andtithve mo
becomes unsteady. The largest bubble discussed in this chaptenpstfshape
oscillations.

For the purely spiraling bubbles the lift forces in normal and bi-normakdoa

are equal, a feature which has not been reported before in an exp&irseidy.
Analysis of the orientation of the vortex plane behind a spiraling bubblercosfi
this equality of lift in normal and bi-normal direction. Implementing this feature
into the equations of motion for a purely spiraling bubble gives a simple relation
between the characteristics of the spiral and the shape of the bubblendiegp

on the rotation, clock- or counterclockwise, the lift force in bi-normal ction is
either positive or negative. Furthermore the lift in bi-normal direction Veaggor
zigzagging bubbles.

Analysis of the vorticity structure behind spiraling bubbles reveals that the
wake consists of two counter-rotating vortex threads, which accourthéolift
necessary to curve the bubble path. Analysis of the strength of theselshea-
ables us to estimate the lift force. The estimate is in good agreement with the
experiments.

The drag experienced by the bubble is unsteady when the bubble moves in a
flattened spiraling motion and is out-of-phase with the bubble velocity. The gen
eral approach that the drag scales with the bubble velocity squaredhdbksld.

The reason for this is the instantaneous vorticity contribution to the drag, the lif
induced drag. For all bubbles performing path oscillations the orientatidineof
plane through these threads immediately behind the bubble are measureé and th
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lift-induced drag is calculated. It is shown that the measured drag can thelle
correctly with a contribution related to viscous drag and a contribution retated
the lift-induced drag, which is induced instantaneously.

Appendix A: General equations of motion

This appendix deals with the calculation of the equations of motion for a rising
oblate ellipsoidal bubble.

Impulsive wrench
Consider the general case of a body translating and rotating in a fluid i6]3D [
The flow potential of such a system can be written as

Q = upr +vd2 + wos +px1 + gx2 +rxs- (7.39)
The linear and angular velocity of the body are
U = (u,v,w)" andQ = (p,q,7)". (7.40)
The kinetic energy®) of the system is
27 = (N7 -U)- U+ (Ng-Q)-Q+ (Npg-U) - Q. (7.41)

Here the subscripfl” denotegranslationand’ R’ rotation. The coefficients of the
matrices are determined by the shape and position relative to the local @ierdin
frame.

The linear and angular impulse of the system are

dT dT dr\7*
I:{du’dv’dw} — N U N © (742
and -
dT dT dT
G| NN e

For an oblate spheroid with main axes coinciding with the local frame the linear

and angular impulse become
Q 00 p
0 Q 0|-¢ q . (744
0 0 0 r

u
. v andA =
w

A 0 O
I=|] 0 A O
0 0 C
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It is clear that the calculation of the impulse of an oblate spheroid can besinae

in a frame rotated such that the three axes of the ellipsoid coincide with the axes
of the local frame (see figure 7.2). The coefficieAts’, and@ can be calculated

with (7.72), (7.74), and (7.77) in the next appendix.

Equations of motion
The equations of motion with respect to a fratki@&” Z fixed in the laboratory for
a massless bubble rising through a quiescent liquid are described by

dI dA

— =—pVg+F, — =T. 7.45
Herel is the linear impulse of the irrotational fluid motion that would result if the
motion of the bubble would be generated instantaneously from a state afimelst;
in this respect4 is the angular impulse. The density of the liquid is giverpby
is the volume of the bubble, arglthe gravitational acceleration. The 'extraneous’
forceF and torquel are due to the presence of vorticity in the flow

The linear and angular impulse are best calculated in a frame, rotating with the
body (the/z'y’2’-frame in figure 7.2) as we saw in the previous discussion, but the
equations of motion are related to the impulse in #E Z-frame. The relation
between a vector iX'Y Z-frame andz’y’2'-frame is

X =R x. (7.46)

The time derivative of this vector is

axX dx’ dR
B dx’ r R, dx’ r OR
As the rotation matrix is orthogonal the following holds
d . drR” dR _

Hence the terrR” - 9R is an anti-symmetric matrix which consists of the angular
velocities of the rotating body frame

dR

R - — =1 q 0o -9, |. 7.49
pm (7.49)

—Q, Q. 0
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Hence

dX dx’ ,

where the angular velocity vector, in terms of the time derivatives of the rotatio
angles, is
Q= (dcosﬂ,[ﬁ,"ysinﬁ) . (7.51)

If the XY Z-frame and they’>’-frame are overlapping at the time the time deriv-
ative is calculated, or for infinitesimal rotation, the rotation maRiwill be the
identity matrix, resulting in

dX  dx’

dt ot
The time derivative of the linear impulse of the system can now be transformed
from 'y 2’-frame to XY Z-frame by

+ Q2 x x. (7.52)

dlxyz de’y’z’

o = Gt + Q x | P (7.53)
Now the general form of the equations of motion in tHg'2’-frame is
dI
q TOxI=—pVe+F, (7.54)
O(I;;lJerA:T, (7.55)

with € the rotation of the bubble, hence the rotation ofthg:’-frame, andU the
velocity of the bubble. Notice that tHg x I-term as it is present in the equations
of Mougin & Magnaudet [11] only appears if one also accounts forrestedion of
the local axes. Finally the forces and torques are projected onto thetFrame,
which was introduced in section 7.3.2.

In section 7.3.2 it is mentioned that the equations of motion are solved using
the observation that the minor axis and the tangent vector coincide; thitetesu
in (7.19) and (7.20). That method and the method described in this appewelix g
identical results for the forces and torques; this justifies the assumptioththat
bubble minor axis and the tangent vector coincide.

Notice that for the oblate ellipsoidal bubble the angular velocity vector in terms
of the time derivatives of the rotation angles=Q, because no rotation around the
symmetry axis can be detected)

Q= (d cos 3, 3, 0) (7.56)
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is related to the angular velocity of the Frenet frame

Q= ‘;j [—7t + Kb]. (7.57)

Projectingc cos 3 and 3 onto the normal and bi-normal directions indeed results
in a bi-normal contribution equal s /dt  only. Although the minor axis and the
tangent vector coincide the rotation around the minor axis is not detectperpyro
This has no consequence for the bubble dynamics because the bublityims-a
metric around this axis.

Appendix B: Irrotational flow around oblate spheroids

This appendix deals with the irrotational flow around oblate spheroidst thes
ellipsoidal coordinate system will be introduced, followed by the velocity ppote
tial for the flow around oblate spheroids. From these flow potentials thealirtu
momentum and dissipation will be calculated.

Ellipsoidal coordinate system

An orthogonal coordinate system can be described by

Tr = (Q1aq27Q3)7 y= (q17qQaQ3)a = (Q1>Q27QS)

0x\ 2 oy \ 2 2:\% o 10
h3:<a§> +<aqy») +<8;> g g MBS (799)

Here,h; are the so-called metric coefficients.

To describe the fluid motion around oblate spheroids an orthogonal syg$tersa
ordinates(u, 0, ) is used; this system is related to a cartesian system, z)
by

x = k cosh p sin 6 cos ¢

y = kcosh psin 8sin @ (7.59)

z = ksinh y cos 0,

wherey is the variable perpendicular to the surface of the ellipsbitie variable
tangent to the surface, the angle around the symmetry axis, a@nek /b2 — 2.
Surfaces: = constantyug say, are the family of oblate spheroids

.%‘2 4 y2 22
—t 5 =1 (7.60)
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with major and minor axes given by
b= kcoshpug, and c= ksinh uyg, (7.61)

respectively; their ratio is
X = b/c = coth puyg.

The metric coefficients,,, hg andh,, for the ellipsoidal coordinates are

N|=

hg = ]{Z(Sil’th 1% + COS2 9) (762)
kc

hy
h, = kcosh psin 6.

Velocity potential

The velocity potentiafb can be calculated from the Laplace equation:

1 17, 0P
— h p— 7.63
k2(sinh? p + cos? 6) cosh pu Op <COS a 8u) (7.63)
+ ! 9 (sinﬁaq)) + ! e =
k2 (sinh? y1 + cos2 ) sin § 99 06 k2 cosh? psin? 6 0p?

Lamb [6] shows by separation of variables that elementary solutions whrtbktv
at infinity have the form

0(1,0,0) = 33 Com@(sinh 1) P (cos ) cos mep

n=0 m=0

+ Z Z dpm Q' (sinh ) P (cos ) sinmyp.  (7.64)

n=0 m=1
Here P (cos #) denotes the associated Legendre function,

m 1AM dm
P (cosf) =sin™ 6 WPn(cos 0) (7.65)

with 0 < m < n and P, (cos #) being the Legendre function of order{1]. The
functions@;' (sinh p) follow from

Q' (sinh p) = cosh™ p ar d” Qn(sinh p), (7.66)

sinh p)™
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where theQ),, (sinh 1) (‘irregular Legendre functions of imaginary argument’) are
defined through the relations

Qo = cot ! (sinhp), Qi =1—sinhp cot™! (sinhp),
-1 —1
0, = — <2”n > sinh 1 Qn_1 + (" > Qn_s. (7.67)

n

Translation along the minor axis

Consider the steady motion of an oblate spheroid with veldéitin the direction

of the z’-axis, which coincides with the minor axis. The velocity potential for the
motion of the ellipsoid, in a fixed reference frame with the origin instantaneously
coinciding with the center of the ellipsoid, is [6]:

®(p,0) = c10 [1 — sinh p cot_l(sinhu)] cos b, (7.68)
where, if the body surface is assumed to be specified by,

Wk
cot 1 (sinh pg) — sinh pg/[1 4 sinh? o]

c10(po) =

Translation along a major axis

For the motion in the plane normal to the minor axis, say:tkdirection, with
velocity U the velocity potential is [6]:

sinh

——  — cot™!(sinh sinfcos p; (7.69
1+ sinh? (sinh 1) e (769)

® (1,0, ) = —c11 cosh

with

Uk
cot 1 (sinh pg) — [sinh? yig + 2]/{sinh pg[1 + sinh? yio]}”

c11(po) =

Rotation about a major axis

Consider the rotation of an oblate spheroid about one of its major axesitay
angular velocity) around ther-axis. The velocity potential turns out to be:

1
1+ sinh? p
sin 6 cos f sin ¢, (7.70)

®(,0,0) = doicoshp |3sinh pcot™ (sinhp) — 3 +
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with
k20
[6sinh? g + 3] cot~1(sinh pg) — 6sinh g — sinh o /[1 + sinh? o]

d21(po) =

Virtual momentum

From the velocity potential the virtual momentum can be calculated.

Translation along the minor axis

The virtual momentum of the ellipsoid is defined as

Ip. = —P/ wWdv = —P/ V. @dV = —P/ ®n. dsS. (7.71)

On substituting the solution (7.68) for the velocity potenfrand the expressions
given in appendix C for the area of the surface eleméraiad thez-component of
the normal to the surface it is found that

IBz = pVWsz

with )

(x?—1)2 —cos™ ! x7!
cos™ 1! = (¢ = )7/
Herex = b/c, is the aspect ratio of the oblate spheroid. Notice thatentioned
in (7.19) is equal tpV M,

M. (x) = (7.72)

Translation along a major axis

The virtual momentum of the ellipsoid is now defined as

Ip, = —p/ dn, dS. (7.73)

Substituting the solution (7.69) for the velocity potential and the expressioas g
in appendix C for the area of the surface elemefiatid thex-component of the
normal to the surface this becomes

I, = pVUM,,



7.5. APPENDIX B 127

(@) (b)

0.5

[or]

0.4
03
= 1=
0.2

0.1

Figure 7.19:(a) M. () as function ofy, (b) M () as function ofy.

with

N|=

My () = — = DE = xCeos Ix (7.78)

xZeosThx 1 = [2x2 — 1](x2 — 1)?
Figure 7.19 shows the plots of the factdrs and M, as a function of the aspect
ratio of the bubble. The added mass increases with the aspect ratio for nmotion
the direction of the minor axis and decreases for motion in the direction of the
major axis.

Rotation about a major axis

The virtual angular momentum of an ellipsoid rotating with angular veloQity
about ther-axis is

A, = —p/ ® [yn, — zn,| dS. (7.75)
Leta. denote the equivalent radius of a sphere with equal volume, definadythro
V= 4mal = §rbie. (7.76)

Using the solution (7.70) for the velocity potential and the expressions gjive
appendix C for the area of the surface eleméhadd they- andz-components of
the normal to the surface one may then also write

A, = %Wpa;:’ QR,,

3 (v2 1)L (70 = Bo)
= S e - w7
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with

2 =11 2 1 2 1 1.1
x“cos txT = (x"—1)2 x°—1)2 —cos™ x
= ;o ) =2 (

(x2—1)2 X2(x2—1)?

Notice that) mentioned in (7.20) is equal @OVRJ;.

Bo(x)

Dissipation

Irrotational flow can provide a good estimate for the force on a body dt hig
Reynolds numbers, i.e. for sufficiently thin boundary layer. The dissipatio

the fluid outside the boundary layer is now is dominant over the dissipation in the
boundary layer. The dissipatidn in the fluid can be calculated by

D= —u/ VU? . ndA4, (7.78)
A

with v the kinematic viscosity of the fluid. Substituting the velocity potential, the
dissipation becomes:

19 [/10d\* [100\ [10P\
D==n) 5 a0\ o 50 ——— | ¢ hgdphgdd
M/o hy Op {<hu 5#) " <h9 89> * <h¢8¢>> } 3dPhedd,
(7.79)
whereh; are the metric coefficients in an ellipsoidal coordinate system as defined

in (7.62). In general the dissipation can be written as

D = 127pUireGi(x), @ =x,y, 2. (7.80)

Translation along a minor axis

For the motion along the minor axis we substitute the velocity potential (7.68)
resulting in

Ga(x) = Sy 332 — 1)3/2 (* = 2)sec () + VX — 1) (7.81)

3 (sec 100 ~ VA2 1)

This was already found by Moore [10].
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Figure 7.20:(a) G..(x) as function ofy, (b) G..(x) as function ofy.

Translation along a major axis

For the motion along the major axis we can proceed in a similar way. We substitute
the velocity potential (7.69), resulting in

G:c(X) _ gx—2/3<x2 o 1)3/2 (XQ — 2) \KX2 — 1) + X4S€C_1(X) ) (7.82)
3 (2 - DV 1 see ()

An expression which, to the authors’ knowledge, has not been rejozefere.

Figure 7.20 shows the plots of the factaks and G, as a function of the as-
pect ratio of the bubble. For the aspect ratiel the dissipation reduces to the
spherical case. The higher the aspect ratio the higher the dissipatioofian in
the direction of the minor axis will be. For the motion along the major axis there
is a minimum. First the frontal surface area of the bubble decreases tiagter
the total surface of the bubble. Later the frontal surface area harchyases and
the dissipation is increased by an increase in total surface area, éd¢kcaumibble
becomes flatter.

Finally, for the steady motion of a single bubble the force experienced by the
bubble at high Reynolds numbers can be calculated from the dissipatiorfinithe
by

Fp = DU. (7.83)

Appendix C: Surface of an oblate spheroid

This appendix deals with the calculation of the surface of an oblate sphieroid
ellipsoidal coordinates;, 6, ).
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Consider a point on the surface specified as

x = b(#,p)sinb cosy
r=< y = b#,p)sinfsinep , (7.84)
z = c¢(0,¢)cosb
with
b(0,¢) = kcosh (0, ),  c(0,¢) = ksinhpu(0, ¢).
The normal to a surface parameterizedtand is, in cartesian co-ordinates,

Irg X ry, Irg X Iy,

n= = 7.85
g Xry|  VEG - F? (7:89)
with
E = rp-ry,
F = rg-r,,
G = ry,-r.
It follows that
E = b?cos? 0+ c?sin® 0 + 2(bbg — ccp) sin f cos O + b sin® 0 + ¢4 cos? 6,
F = (bby, — ccyp)sin 6 cos 6 + bpb, sin? 6 + coc, cos? 0, (7.86)
G = b*sin®0+ b sin® 0 + 7, cos” 0.

The area of surface is

2 ™
S = / / VEG — F2dddy (7.87)
0 0

For our oblate ellipsoidal bubble this reduces to

™ 1
S =27 / VEGdY = 27 / bv/Edcos 6. (7.88)
0 —1
The mean curvatur& of the oblate ellipsoid is given by
EN + GL

with E andG given above and

(rg x rgo) “Tpo
lrg X Tyl

L=n -ryp= (7.90)
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(rg X Tp) Ty

e g X 1y ( )
It is straightforward to show that
1
o — sinh y10(1 + sinh? p10)2 sinh po
= — 3 - 1 1-°
E(sinh? 1o 4+ cos2 )2  k(sinh? pg + cos2 0)2 (1 + sinh? )2
(7.92)
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Chapter 8

Motion of bubbles with shape
oscillations*

The previous chapter dealt with bubbles of fixed ellipsoidal shape. Irchigigter
larger bubble diameters will be considered which cause shape oscillatibosst
in. Literature, mainly the work by Lunde & Perkins [11], will be discussed the
present experimental results will be compared with their results.

For bubble sizes right at the onset of shape oscillations the stable spiraling
motion changes into a pure zigzagging motion. This is due to a coupling with
the non-axisymmetric mode (2,2) shape oscillation. Larger bubbles riseoie
or less spiral paths. Finally multiple shape oscillations force the bubble into an
erratic path. All bubbles show an axisymmetric mode (2,0) shape oscillaticsh
is coupled with velocity oscillations and therefore with oscillations in the wake.

The analytical method to calculate shape oscillations on spherical bubdalgs (
[2, 7]) is extended to shape oscillations on ellipsoidal bubbles. The limitirsg ca
for aspect ratio one is calculated correctly but the method results in devation
from numerical calculations by Meiron [13] for higher aspect ratios. Areot
closure of the model is still in progress. A similar approach has beed iosgerive
an analytical expression for volume oscillations on oblate ellipsoidal bukddes
function of the aspect ratio. Evaluation of this expression at severacsptios
provides frequencies which agree with numerical data of Strasberfg [19

tadapted from: C.H.J. Veldhuis, A. Biesheuvel, & L. van Wijngaardgmape oscillations on
ellipsoidal bubblesto be submitted to J. Fluid Mech. (2007)
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8.1 Introduction

Lindt [8] is one of the first to report on bubbles performing shape osaitia.
Following the regime with an oblate spheroid in helical motion Lindt finds oblate
spheroids with shape oscillations in almost rectilinear motion starting at an-equiv
alent diameter of 4.8 mm (see figure 6.1). In chapter 6 we already sawhtad s
oscillations in our experiments start at 2.8 mm for purified water and 3.0 mm for
tap water. The difference with Lindt’s findings is attributed to the lack of time res
olution in his experimental data, because no high speed imaging was available to
him.

Lunde & Perkins [11] also studied the shape oscillations on ellipsoidal rimibg

bles. They provide an overview of bubble experiments for diameters pB22,

3.52, 4.32, and 5.16 mm. They used stereoscopic high speed imaging (up to
500 frames/s) and extracted two major axésandds) from their digital images.
These axes are identical to the axgsand d,, defined in figure 7.1. Lunde &
Perkins distinguish between axisymmetric and non-axisymmetric shape oscilla-
tions. Therefore they perform a Fourier analysis on the product ofitbenea-
sured axesd; - dz) and their ratio {; /d2). For axisymmetric shape oscillations
the axes will change in phase; the product of the two axes will amplify théassc
tions, whereas their ratio will cancel the oscillations. For non-axisymmetapesh
oscillations the axes will change out of phase; therefore their ratio will ayribiéf
oscillations.

Lunde & Perkins analyzed the acceleration of the bubble along its path and
showed a clear interaction between oscillations of the acceleration andhaxety
ric shape oscillations; this is in agreement with de Veeal. [20]. They studied
the effect of oscillations in the aspect ratio on the velocity of the bubblelzmelex
that only by taking into account these oscillations the rise velocity of the bubble
can be modelled properly.

Comparison with numerical work of Meiron [13] suggests that the axisym-
metric and non-axisymmetric frequencies detected by Lunde & Perkinsfare o
mode (2,0) and (2,2), respectively. They state that the axisymmetric mode (2,0
‘travels’ from pole to pole and the non-axisymmetric mode (2,2) 'travelstiado
the equator. Assuming the bubble to be an oblate ellipsoid and the oscillations to
be capillary waves, Lunde & Perkins give approximate expressiomadadie (2,0)
and (2,2), respectively

161/2x2 [0
Z1 1) / n"3 and foy = 277\/7 ma (8.1)

whereo is the surface tension coefficient. Note that these expressions dalnoere
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to the frequency of a spherical bubbje £ 1). Comparison with results from Me-
iron [13] shows that these expressions are accurate within 8% Jot y < 3.5.
The bubbles examined by Lunde & Perkins and the experiments discustesl in
report lie well within this range.

Lunde & Perkins also investigated the wake of bubbles. They stated thairties
shedding frequency is equal to twice the path frequency (approximatesfant at

6.5 Hz for a wide range of bubble diameters). This idea follows from djgziion
experiments with zigzagging ellipsoidal particles which shed large amounts-of v
ticity at the outer positions of the zigzag. Lunde & Perkins did not analyze the
bubble wake in uncontaminated fluids, where the bubbles have a nokshew-

ary condition. As will become clear from the Schlieren experiments in purified
water (see section 8.2.2), the bubble wake is completely different and ttexvo
shedding frequency is not equal to twice the path frequency, but mghkm

In section 8.2 the experimental results will be presented and compared with the
literature; new insights with respect to the relation between path, shapeaied w

of the bubble will be discussed. In section 8.3 an analytical method to calculate
shape oscillations on an oblate ellipsoidal bubble will be discussed. Sedfia 8

left to conclutions. At the end of this chapter two appendices are includpd.
pendix A discusses the calculation of the surface of an oblate sphercédaads
order. This is follow by appendix B on the calculation of the volume oscillation
frequency of an oblate spheroid.

8.2 Experimental results

In chapter 6 the general features of single bubble motion are discussed these
data six representative experiments are selected. The equivalent didmgtas-
pect ratioy, path frequency,.;», and Reynolds numbete for these experiments
are given in table 8.1.

In the next section the bubble path, orientation, and shape will be disttdse
lowed by a section on the wake structure behind the bubble, and finalltiarsec
on the interaction between path, shape and wake oscillations.

8.2.1 Bubble path, orientation and shape

Figure 8.1 shows the 3D bubble path with gray values indicating the bubble-velo
ity for the six representative bubbles; figure 8.2 shows the top view in thjeo.
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Figure 8.1:Measured trajectories of bubbles rising in water. The grtlyes represent
the tangential velocity of the bubbles, with the numberd t@xhe codes giving the corre-
sponding value in ms'. Axes are non-dimensionalized with the equivalent diam&ee

table 8.1 for further details.
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Figure 8.2:Top views of bubbles rising in water. The gray values repretee tangential
velocity of the bubbles, with the numbers next to the codeimgithe corresponding value
in m s~'. The * indicates the starting point of the trajectory. Sable 8.1 for further
details.



138 CHAPTER 8. MOTION OF BUBBLES WITH SHAPE OSCILLATIONS

sub-figure D.,/mm x  Re Jpatn/Hz path

(@ 3.0 22 899 6.7 zigzag

(b) 3.4 22 973 7.0 zigzag

(© 3.6 2.3 1018 5.5 spiral

(d) 4.0 24 1096 6.5 flattened spiral

(e 4.5 27 1162 6.2 tilted flattened spiral
() 5.2 28 1305 5.2 chaotic

Table 8.1:0Overview of experiments with bubbles with shape oscillatipresented in this
chapter. The sub-figure numbers refer to the numbers of thdigures in section 8.2.1.

In chapter 6 several reasons were given for these bubbles todwtead their final
stage of motion. The first two bubbleg) @nd ), are purely zigzagging bubbles.
Hence, in contrast to what has been stated in the literature [12, 17], @0giigg
path can be a stable solution for the rising bubble. The reason for thiggigza
motion will become clear when the shape oscillations of the bubble are didcusse

Increasing the bubble size changes the bubble path into a curve ofjlypug
spiral form (figures 8.2 and ()). The largest bubbles (figures 8@nd f))
are so-called rocking bubbles for which the motion is more random. In adlscas
the velocity has large oscillations. The characteristic high velocities at the oute
positions of the zigzag or flattened spiral, as has been reported in clTafaer
bubbles without shape oscillations, are hardly visible.

Figure 8.3 shows projections of bubble shape and path onto the vextical
andY Z-plane. Whereas the smallest bubbles still resemble an ellipsoid with small
amplitude shape oscillations and a minor axis aligned with the bubble path, the
largest bubbles experience large amplitude shape oscillations and theistse
is far from ellipsoidal. It is clear that the reconstruction of bubble shayolecai-
entation, as presented in chapter 6, is not valid in this regime. But still a sndall an
a large axis can be detected in each projectien @ndd; », respectively, see also
figure 7.1). Hence, an analysis of the bubble shape oscillation fremsemnt the
sense of Lunde & Perkins as described in the introduction, is possible.
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Figure 8.3: Stereoscopic images of bubbles with their paths and shalmeages are
recorded with 640 frames/s. The bubble shapes are plotesg #0 frames, giving a time
interval of 0.64 s between the bubble shapes. See table&Urfoer details.

Relation between oscillations in shape and velocity

Figure 8.4 presents normalized power spectra of the tangential velocitg btiti
ble, the product of the two major axes and their ratio. The power speetizoar
malized with their average value. On the vertical axis in figure BAT| means

[FE/NFS @I,

with F the Fast Fourier Transform of a functigiit). Before the Fourier transform

is calculated, the average ¢ft) is subtracted. Now the power spectrum does not
show any pronounced peaks equal to the inverse of the duration gpanment.
The typical duration of an experiment is approximately 0.2 s. The pathdrayu

is approximately 5-7 Hz; hence, the period of path oscillation varies bet@.édn
and 0.2 s. Therefore the path frequency cannot be detected in thelizedeower
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Figure 8.4: Normalized power spectra of tangential velocity and shapgper plot:
|FFT U], Lower plot: —|FFT dy/ds| and - -|FFT dyds|. See table 8.1 for further

details.



8.2. EXPERIMENTAL RESULTS 141

spectra in figure 8.4.

At the onset of shape oscillations there are only two basic modes. Meigpn [1
calculated the frequency of shape oscillation modesn(), with » = 2,3, .. and
m = 0,..,n, using a linear stability analysis. Comparison of our experiments
with his results shows that the two basic modes are the axisymmetric mode (2,0)
and the non-axisymmetric mode (2,2), as was also found by Lunde & Pexkihs
with respect to the axisymmetric mode by de Vrsl. [20]. For larger bubbles
multiple frequencies are present, which cannot be linked with frequeoidegher
modes { > 2) calculated by Meiron, because frequencies for mode 3 and higher
are larger than approximately 150 Hz. It is more likely that the other frezjeen
are caused by non-linear effects.

For the smaller bubbles there is a clear coupling between the frequenay of th
tangential velocity and the axisymmetric shape oscillation. The larger the bubble
the more frequencies appear, and the more random the bubble path be@&he
the coupling between the mode (2,0) shape oscillation and the tangential velocity
remains. This coupling can be understood by recalling that the mode (2,0)smplie
an oscillation of the bubble aspect ratio. Therefore the added mass amauer
influenced, leading to an effect on the velocity of the bubble [20]. Thi®ires
clear by looking at the momentum balance in tangential direction which states

d
dt
Here, the added mass coefficiglt, is given in (7.72) in appendix B of chap-

ter 7. The second term on the right hand side is the viscous contribution to the
dragFp .isc, WhereG, is given by (7.81) in appendix B of chapter 7. Figures 7.19
and 7.20 in this appendix show the dependence of added mass and difzgy on
aspect ratio. Typical variations in the aspect ratio are of the order%fl2@ding

to variations in added mass and drag coefficients of approximately 8% an4%
spectively. De Vrie®t al.[20] studied the effect of oscillations in drag and added
mass on the rise velocity of a bubble. From experiments they extracted fhreaha
the bubble. This enabled them to calculate the drag and added mass ausffioie
solve (8.2) with a Runge-Kutta scheme. They showed that oscillations inlthe ca
lated rise velocity of the bubble only agree with oscillations in the experimentally
measured rise velocity if added mass is taken into account. For the relatinggy la
bubble studied, the effect of the drag is much less than the effect of tleel aadlass.

pV— (M=(x)U) = pVgi + 6mplU DegG=(X) + Fp,ind- (8.2)

Relation between oscillations in shape and path

Figure 8.4 shows that the velocity of the bubble is not influenced by the non-
axisymmetric mode, because this mode does not change the aspect ratierand th
fore the added mass and drag. But there is an influence on the bubhlevhith
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Figure 8.5:Bubble along a zigzag path. Arrows indicate direction otédue to pressure
difference.

becomes clear when figures 8.2 and 8.4 are compared. The non-axisygnmetr
shape oscillation is clearly present in figures 8 4(hd (); the path of the bubble

is a zigzag, as can be seen in figures &.2(hd ). For the third bubble (fig-

ure 8.4€)) the non-axisymmetric shape oscillation is less pronounced; the bubble
path is a spiral. The fourth bubble shows a non-axisymmetric shape oscillation
although the peak is less pronounced than for the bubbleg an@ ©). The bub-

ble now performs a flattened spiraling motion. Obviously there is an interaction
between the bubble path and the non-axisymmetric shape oscillation; the zigzag
path can be directly coupled to the presence of non-axisymmetric shaifia@-osc
tions. The reason for this interaction is the breaking of the axisymmetry of the
system in case of a zigzagging motion. A spiraling path is axisymmetric and does
not give rise to non-axisymmetric shape oscillations, as is shown by théebiabb
figure 8.4€). A zigzagging motion forces the bubble to have a non-axisymmetric
shape. Figure 8.5 schematically shows a bubble aligned with a zigzag path. In
order to move along a zigzag curve an effective horizontal force hias present.
Therefore the pressure outside the bubble on the two sides will be diffgfeand

p, ). The positions op, andp, change depending on the location on the zigzag
curve. This leads to a local difference in curvature, becaysep, = oV - n,

with p; the pressure inside, the local pressure outside the bubble &nhdn the

local curvature, and the bubble axisymmetry breaks. For a spiralingdotitl
axisymmetry is far less pronounced because of the larger radius @aftace\of the

path compared to the zigzagging path. Furthermore the curvature of thepsdh

is steady, in contrast to the unsteady zigzagging motion. Therefore thenges

of non-axisymmetric shape oscillations is expected for zigzagging bubidiesc

for spiraling ones.
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Deg/mm  foo/Hz  fao/Hz  fpan/Hz  f2.2/fparn  Path

3.0 61.8 40.6 6.7 6.0 zigzag

3.4 50.7 34.0 7.0 4.9 zigzag

3.6 455 - 5.5 - spiral

4.0 39.0 20.5 6.5 3.2 flattened spiral

4.5 - 17.5 6.2 2.8 tilted flattened spiral
5.2 - 14.0 5.2 2.7 chaotic

Table 8.2:Relation between shape oscillations and bubble path. *-amdeno distinct
frequency detected.

Table 8.2 summarizes the frequencies for the six bubbles in figure 8.4. The
frequency of the mode (2,2) oscillation is linked with a multiple of the path os-
cillation frequency. The better the 'fit’ of these frequencies, the flattebtidble
path. Notice that the path frequency of zigzagging bubbles is slightly highaer
the path frequency of spiraling bubbles. It seems that the non-axisymisieae
oscillations are able to change and ’lock-in’ the path frequency.

8.2.2 Bubble wake

In this section the wakes of four representative bubbles are showerdélelop-
ment in bubble motion is similar to that of the six bubbles presented in the previous
section. Table 8.3 shows the relevant parameters for these experiments.

Figure 7.144) to (e) presented the wake behind bubbles of fixed shape. In fig-
ure 7.14 ) shape oscillations set in. Figure 8.6 starts with the bubble in fig-
ure 7.14 f) and continues with Schlieren images of larger bubbles. At the onset
of shape oscillations the unsteady wake is rather structured. The wagistsoof
regions of concentrated vorticity, which are shed at a specific freayuéncreas-

ing the bubble diameter destabilizes the wake. The single vortex shedding fre
quency disappears and no specific frequencies are detected amy. l@hgs is in
agreement with the Fourier analysis of the bubble shape and velocity, sahmgis
multiple frequencies for larger bubble diameters (see figure 8.7). Notaia Hie
coupling between mode (2,0) and the velocity. Furthermore, the non-axisyimme
mode (2,2) is strongest when the bubble performs a zigzagging motionedigur
8.7(b) and €)) as was also the case for the non-Schlieren experiments.
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sub-figure D.,/mm x  Re path

@ 2.8 2.1 1062 spiral

(b 3.5 2.2 1197 zigzag
(© 3.9 2.3 1289 zigzag
(d) 5.5 2.7 1674 chaotic

Table 8.3: Overview of Schlieren experiments of bubbles with shapéllagons. The
sub-figure numbers refer to the numbers of the sub-figuresdiion 8.2.2.

From the Schlieren images the wake frequency can be extracted. Thstlaudp-

bles have a highly irregular wake consisting of multiple frequencies. Tdrere

the wake frequency cannot be detected for bubble diameters largeB.thamm.
Table 8.4 shows the wake frequencies for seven bubbles with shaiflatiosts.

We clearly see the wake oscillation frequency decreasing with increaslutgeb
diameter. In the next section we will see how the wake oscillations are coupled
with oscillations in velocity and shape.

Dey/mm 28 29 31 31 33 34 35
Jwake/Hz 74 65 65 54 48 45 46

Table 8.4:Wake frequencies for several bubble diameters.
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(a) (b)

(©) (d)

Figure 8.6:Stereoscopic Schlieren images of bubbles with their pathsh-dotted line
and bubble shape: solid line. Images are recorded with &4fes/s. The bubble shapes
are plotted every 10 frames, giving a time interval of 0.648Meen the bubble shapes.
The elapsed time starting from the first bubble shape is &teédtin the upper left corner.
The Reynolds numbers ara) (1062, ) 1197, €) 1289, and @) 1674. See table 8.3 for
further details.
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Figure 8.7: Normalized power spectra of tangential velocity and shapgper plot:
|FFT Uy, Lower plot: —|FFT dy/ds| and - -|FFT dyds|. See table 8.3 for further

details.
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8.2.3 Interaction of path, shape, and wake oscillations

The bubble path, shape and wake and their oscillations are discussestdiis
focusses on the interaction between these aspects.

Shape oscillations frequency versus bubble diameter

Figure 8.84) shows the oscillation frequencies of shape, velocity, and wake ver-

sus the equivalent bubble diameter for bubbles rising in purified wateseltata

agree well with the experimental data of Lunde & Perkins [11] (see fi§L8€)).

They performed a series of five experiments at six bubble diameters arabad

the results over these five experiments; therefore their scatter is much smaller

Lunde & Perkins performed some experiments to visualize the wake strulstire

detailed information is never obtained. They recorded zigzagging ellijdguada

cles where vorticity is shed at the outer positions of the zigzagging pathefdhe

the wake frequency is assumed to be twice the path frequency [10]. réker

Schlieren experiments show a different view of the wake dynamics ofiesiiihe

frequencies are higher than twice the path frequency and are givea metiious

section and also plotted in figure 8a8{vith '*'. There is a match between axisym-

metric shape oscillations and oscillations in the wake. This is due to the change

in momentum of the bubble when the axisymmetric shape oscillation changes the

bubble aspect ratio. Any change in velocity and shape modifies the piwaod

vorticity at the bubble surface; these variations will be visible in the wakee On

might think that the shape oscillations are directly coupled with the wake oscilla-

tions and not indirectly through the bubble velocity. Figure 7eld(ggests other-

wise; here wake instabilities for a bubble performing a flattened spiral betare

shape oscillations are present, suggesting that wake oscillations aredddpyere-

locity oscillations rather than shape oscillations. It seems that any shaetiosc

first has to trigger velocity oscillations before there will be any effect enibke;

this effect can also be observed for bubbles rising in tap water as wes&itiaw.
Figure 8.8b) shows the oscillation frequency of shape and velocity for bub-

bles rising in tap water. There is a large scatter in the shape oscillation freque

this is due to surfactants which can lower the surface tension down to 1/& of th

surface tension in ultra clean water. For every experiment in tap water @tis n

precisely know what the amount of surfactants is on the bubble sutfasdeads

to differences in aspect ratio, bubble velocity and oscillation frequelisgzsalso

chapter 6). Generally, the aspect ratio of the bubble is lower in tap wageeftine

the critical bubble diameter above which shape oscillations are triggereshses.

In many cases the most important frequency is twice the path frequenmokap

mately 6.5 Hz). The mode (2,0) shape oscillations is still detected, but the aguplin

between the axisymmetric mode (2,0) and the oscillations in the velocity of the
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Figure 8.8:Figures &) and ) show the measured frequencies versus bubble diameter: *
the wake, o the velocity,the shape oscillations mode (2,0), and + mode (2,2). Figre (
for purified water, and figurebj for tap water. Figured) gives the frequency of accel-
eration, shape oscillations (mode (2,0) and mode (2,2)),veake versus the equivalent
radius. The lines resemble the model in (8.1). Figu)dq taken from Lunde & Perkins
[11], with permission of R.J. Perkins and Springer Science.
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(b)

Figure 8.9:Schlieren images of a 3 mm (figura)l and a 3.5 mm (figureb) zigzagging
bubble rising in tap water. Clearly visible are the peridolizsts of vorticity at the outer
positions of the zigzagging motion. In between the burstsible double-threaded vortex
structure is present. The elapsed time starting from the embthe bubble appears in the
images is indicated in the upper left corner.

bubble is no longer present. At first this might look odd, because the idsdhat
axisymmetric shape oscillations change added mass and drag and thkeubiole
velocity. But surfactants in the tap water change the boundary conditigheon
bubble surface from no-shear to no-slip which results in a larger dkédogreas in
the no-shear case the added mass is dominant, in the no-slip case the drag is d
nant. Therefore shape oscillations no longer trigger oscillations in bulehbeity

in tap water. This might also explain the low vortex shedding frequencydftyn
Lunde & Perkins, which is based on experiments in contaminated water.oFhe v
tex shedding is coupled with the oscillations in the velocity and is therefore only
twice the path frequency. Figure 8.9 gives an example of a zigzaggireoimtap
water; the vortex shedding is periodic in bursts at the outer position of tkagig
and therefore it is equal to twice the path frequency. This vortex streitwtearly
different from the vortex structures of bubbles rising in purified wagar, again,
we see that the vortex shedding frequency is uncoupled from the skaijflation
and there is only a coupling between vortex shedding and oscillations inltiee ve
ity. In the case of free-shear surfaces shape oscillations trigger tiscidlan the
velocity and therefore the vortex shedding frequency is also affected.

Shape oscillation frequency versus bubble aspect ratio
Figure 8.10 shows the experimental data for the frequency of the skajlations
versus the aspect ratio of the bubble. Figure &jl8fiows the data for bubbles
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rising in purified water and figure 8.18)(for tap water, where the bubble aspect
ratio is smaller, because of surfactants.

Meiron [13] performed a numerical simulation based on potential flow to cal-
culate the eigenmodes of an oscillating ellipsoidal bubble. Actually, the pagser w
a reaction on an earlier paper from Hartunian & Sears [5] who claimedskizgue
oscillations on a flattened spheroid would lead to instability of the bubble path.
Their linear stability analysis showed unstable eigenmodes of the spheaimal b
shape. Meiron repeated their calculation but he performed a stability &npérs
turbing a bubble with ellipsoidal base shape. He found no unstable eigesmod
and concluded that inviscid theory does not provide a mechanism forinstth
bility. His research also led to a relation for the dependence of the fregusdn
a mode on the aspect ratio of the base shape; mode (2,0) and (2,2) sertpde
in figure 8.10 ('o-.-0’- and '0—o0’-line, respectively). The experingshow fre-
qguencies which are lower than Meiron’s prediction. This might be caugedeb
assumption of an oblate ellipsoidal bubble in both Meiron’s calculations and the
analysis of the experiments. In the experiments the bubbles do not harafa fo
symmetry; the bubble is slightly flatter at the front. Therefore, by assuming an
oblate ellipsoidal shape, the aspect ratio is slightly underestimated, leading to a
lower frequency compared with Meiron’s calculations. But still after a sstaft
of the experimental data towards a higher aspect ratio (15% being the maximum
error in the aspect ratio) the difference with Meiron’s results remainebahly
the remaining difference is due to effects of viscosity which are not axtdouby
Meiron. Lunde & Perkins’s expressions from (8.1) are also plotted imrdi@.10.
For mode (2,0) the agreement with the experiments is much better. For mode (2,2)
Lunde & Perkins’ model agrees well with both the experimental data ancdNsir
results.

Notice that the large scatter in the non-dimensionalized frequency fotdsibb
rising in tap water is again due to surfactants; now the surface tensionisdqual
for all experiments. If the surface tension is known for every indivigxaeriment
the scatter would be much less.

We see that the rather simple model of Lunde & Perkins is in better agreement
with experimental data than the extensive numerical calculation of Meiroor- In

der to better understand the difference we will focus on the calculatiohagfes
oscillation frequencies of ellipsoidal bubbles. In the next section the vaelvk
calculation of the shape oscillation frequency of a spherical bubble willibe
cussed. Following a similar approach the shape oscillation frequenciaobfate
ellipsoidal bubble will be calculated and compared with Meiron’s results.
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Figure 8.10:The non-dimensionalized frequency, within rad s! for the shape os-
cillations versus the aspect ratio of the bubblexperimental values for mode (2,0), +
experimental values for mode (2,2);-@Meiron’s mode (2,0), 0—o0 Meiron’s mode (2,2),
--- Lunde & Perkins’s mode (2,0), and — Lunde & Perkins’s mod&)(2aken from (8.1).
Figure @) for purified water and figureoj for tap water.
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8.3 Calculating shape oscillations

The calculation of shape oscillations of a spherical bubble in an inviscid liguid
der the action of capillary forces has been the subject of many papasgeigh

[16] originally analyzed the oscillations of spherical droplets in a gas.aBaiin-

ilar approach can be used for a spherical gas bubble in a liquid. In preagh

he calculates the surface energy and the kinetic energy in the systenmeiicaph
coordinates«, 6, ¢). Substituting these energies in Lagrange’s equation provides
the equations of motion. For oscillations of the form

exp i(nf + mae) exp iwp, mt,

the eigenfrequencies of the system are

g

wp = (n+1)(n—1)(n+2) (8.3)

pa
Here o is the surface tension coefficient,is the density of the liquidg is the
radius of the undisturbed bubble, andandm are the modes of the oscillation.
There is no difference between the frequency of the axisymmetric mode((: =
1,2,...) and the non-axisymmetric mode,(m) (n = 1,2, ... andm = 1,2, ...) for

a spherical bubble. This equation is valid when the density of the surirognd
fluid is much larger than the density inside the bubble. Lamb [7] had a differen
approach; he used the dynamic boundary condition to close the systefouzcd

the same result as Rayleigh.

More recent studies [2, 4, 9, 13, 18] repeated these calculations wiheafit
approaches, leading to identical expressions for the frequencyaplesbscilla-
tions of a spherical bubble. These calculations are all based on sghmriables.

So, with respect to rising bubbles, these equations will only hold for smaiewe
numbers. For higher Weber numbers one should have an ellipsoidatbhage

in order to treat the oscillations as sufficiently small, so that linearized thewry ¢
be used. To the authors’ knowledge the calculation of shape oscillatioe$ on
lipsoidal shaped bubbles was only carried out by Meiron [13]. He assithilar
method as Lamb, but now for a base shape which is consistent with the Weber
number. He was not able to analytically calculate the equivalent of (8.3)fei-
lipsoidal bubble, but calculated it numerically. Figure 8.10 shows the digpee

of the non-dimensional frequency on the aspect ratio of the bubble fde r2@s-
cillations. At an aspect ratio of one the frequencies are equal to thedinetes on

a spherical bubble. The overall tendency is a decreasing freqdienicreasing
aspect ratio.
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The aim of this section is to derive the analogue of (8.3) for the case dfipn e
soidal bubble. Before we start with the ellipsoidal bubble, let us studyigiemtze-
quencies for a spherical bubble. The method of Rayleigh will be useddolate
the surface and kinetic energy of the system.

8.3.1 Shape oscillations on a spherical bubble

The velocity potentiald of the irrotational fluid motion outside the gas bubble
satisfies Laplace’s equation; in spherical polar co-ordinates ),

10 (,00 1 0 (. 00 1 0’
7"725 <T 87/‘) -+ 77‘2 Sin@% <S1H989> + 77”2 SinQHai(pQ - 0 (84)

A solution associated with standing waves on the fluid-gas interface is

o¢] n
O(r,0,p,1) = Zr_(”‘H) (Z Cnm (t) P (cos 0) cosme +

n=0 m=0

z”: o, (t) P (cos 0) sin mcp) . (8.5)
m=1

Here P/"(cos #) denotes the associated Legendre function (e.g. Abramowitz &
Stegun [1]) and:,,,,,(t) andd,,,, (t) are shape modes of the potential. The velocity
potential must satisfy the kinematic condition that at the bubble surface thehor
component of the fluid velocity equals the normal velocity of the bubble ceirfa
Write the equation for the bubble surface as

r=R(0,p,1),

then this condition becomes

OR (10BN (10RY (1 0%\ ( 1 0B\ 0% oo
ot r 00 r 00 rsinf dp rsinf dp ) Or’ ’
to be satisfied at = R(0, ¢, t).
In order to linearize the boundary condition assume that

R(0,p,t) = a+((0,¢,t),

where( is small. On using that the disturbance potential must also be small, the
kinematic condition becomes
o¢ 09

%= o (8.7)
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to be satisfied at = a.

At this point Lamb [7] introduces the linearized dynamic boundary condition.
Therefore it is necessary to calculate the curvature of the bubble tafist.
Rayleigh’s approach uses the surface energy and kinetic energyadMantage is
that the curvature of the bubble does not have to be calculated, but duvaiidage
is that the kinetic energy is of second order in the disturbance potentiateleme
surface energy should also be calculated to second order. Henmoatde taken
because the oscillations cause a second order contribution to the volume of th
bubble, which has to be accounted for in the surface energy.

The instantaneous volume of the bubble is given by

2 pm 27 pm
vzé/o /0 R3Sm9d9d¢:§/0 /0 lao + (PP sin0dodp,  (8.8)

where the ‘time-dependent radiug)(¢) and the ‘undisturbed radiug’can be dif-
ferent. Linearizing the bubble volume gives

V= %ﬂag [1 +3(/ag + 3?/&%} , (8.9)

with

27 pm o 2T pm
¢ = ) / / (sinfdddy and (2= L / / ¢* sin fdfdep.
47 0 0 4r 0 0

Let the disturbance of the radigde

(0,0.t) = > { > anm(t) Py (cos 0) cosmip

n=2 \m=0

+ Z bpm (t) P (cos 0) sin mgo} , (8.10)
m=1

wherea,,, (t) andb,,,, (t) are surface modes. From the orthogonality properties of
spherical harmonic functions (e.g. Lamb [7]) it follows that

- — !
=0 and 2= (al,+b2,) 2n1+1EZJ_FZ;' (8.12)

There is no first order contribution to the volume. We are interested in the sur
face energy due to shape oscillations and not due to changes in volunidingva
mean source term in the velocity potential requires a small correction to tiis:un
turbed radius’ of ‘second order’

ap(t) =a [1 - ?/aﬂ , (8.12)




8.3. CALCULATING SHAPE OSCILLATIONS 155

where the radiug is related toV/ (¢) = %na?’. This correction needs to be taken
into account when calculating the surface energy. The instantanesau®fathe
surface of the bubbles is given by

2m 18R 1 OR\"_,
S = / / \/1+ RE)H +<Rsm98gp) R*sin 6 dfdy. (8.13)

Hence, the linearized surface energy is
¢\’ RIS 2
o0 sin 6 0y

— 4ra? [1 +in—1)(n+ 2)?/&} (8.14)

S

dmad [1 + Cz/ao} + 27

from which the excess surface energy associated with the oscillationsnd fo
be

o(5— 47ra2) = 21’ (n—1)(n+2)o

az, + b 1 (n+m)!
mn R . 8.15
zn:%: a? 2n+1(n—m)! (8.15)

The kinetic energy of the fluid can be calculated from the expression
T=-3%p /<I>V<I> -ndS. (8.16)

The linearized kinetic energy is

2 ™
T = %paz/ / {Cbaaq)} sin 6 dddy
") r=a

2 l
_ n—i—l ZZ 2, +d, 1 (n+m) (8.17)

T a1 a? 2n+1(n—m)!

Substituting the expression for the velocity potential (8.5) and the exprefsio
the disturbance of the radius (8.10) into the kinematic condition (8.7) reghaés
a2 danm a2 db,,,

ntl a4 dem =i T (8.18)

Finally, consider the.,,,, andb,,,, as independent generalized coordinates, we can
substitute the expressions (8.15) and (8.17) in Lagrange’s equatiorgeReral-
ized coordinate.,,,,, this is

Cnm = —

d OL 0L

o G =0 (8.19)
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with
L:T—U(S—47Ta2),

anda representing the time derivative @f The ‘equation of motion’ for a typical
‘coordinate’a,,,, then becomes

d?am
dt?

by which the eigenfrequency from (8.3) is recovered.

—(n+1)(n— 1)(n+2)#anm — 0, (8.20)

8.3.2 Shape oscillations on an ellipsoidal bubble

Now we follow an identical approach for the shape oscillations of an ellipsoid
bubble. First look at the surface energy and kinetic energy to seawoied, ahen
calculate the second order contribution to the volume of the bubble.

Appendix B in chapter 7 provides general information on the flow around
oblate spheroids in an ellipsoidal coordinate system. Let the bubble slrfac
an ellipsoidal coordinate system be specified by

n= :u(0> @, t)a

where . is the variable perpendicular to the surface of the ellipséithe vari-
able tangent to the surface apdhe angle around the symmetry axis. Surfaces
1 = constant form a family of oblate spheroids.

The kinematic boundary condition becomes

ou 1 0P Ju

ok i/ 8.21

o " 12(smb2p+ cos20) 00 00 (8.21)
1 0 ou 1 0P

k2 cosh? pusin® @ % % k2 (sinh? pu 4 cos? 6) %’

to be satisfied om = 1(60, p,t). Suppose that without the shape oscillations the
bubble has an oblate spheroidal shape 1; the corresponding ratio of axes is
x = coth ug. Let the perturbed surface of the bubble be given by

(0, 0,t) = po +¢(0,,1),

where( is small. Linearizing the kinematic boundary condition one obtains

oc 1 oo
ot k2(sinh? pg + cos20) O
1 02 0Py O¢
— - 8.22
k2(sinh? pg + cos? 6) < op? ¢ 00 89) ’ (8.22)
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to be satisfied op = 1; here we have set

B(p,0,0,t) = Po(p,0) + D' (1, 0, ,1), (8.23)

where®, denotes the undisturbed velocity potential @ida small disturbance to
it.

The undisturbed velocity potentidl, forces the bubble to have an oblate el-
lipsoidal shape. We now sdt, = 0 and retain the oblate ellipsoidal shape by
assuming a certain aspect ratio. With a constant surface tension a splieee
only equilibrium shape in a quiescent liquid. A variable surface tensiorgatos
surface can make an ellipsoidal shape an equilibrium one. This implies that the
surface tension has to change with the arfglevhich will be discussed later on.
The linearized kinematic boundary condition now reduces to

¢ 1 o’

Ot k2(sinh? jug + cos?2 ) Ou -

If the flow potential takes the form

(8.24)

6,p,t) Z Z Cnm @ (sinh ) P (cos ) cos me (8.25)

n=0m=0

this corresponds to

By (cos 8.26
Z Z k2 ( s1nh2 po + cos26) " (cos @) cos mep ( )

n=2m=0

with
1 da,m
Conm =
{dQy/du}ty, dt
The shape oscillation frequency will be calculated for the axisymmetric modes
only. Hencem = 0 and thep-dependence vanishes.

Surface energy

Following the notation given in Kuipers & Timman [6] the surface area is

2 ™
S = / / VEG — F2dode. (8.27)
0 0

Expressions for E, G, and F are given in appendix C of chapter 7oliooblate
ellipsoidal bubble this reduces to:

™ 1
S =2r / VEGd) = 27 / bvEdcos, (8.28)
0



158 CHAPTER 8. MOTION OF BUBBLES WITH SHAPE OSCILLATIONS
with
E =b?cos® 0 + ?sin? 6 4 2 (bby — ccg) sin @ cos 6 + b3 sin? 6 + ¢4 cos? 6.

and
b =k cosh pu,
c = ksinh p.

Appendix A gives the detailed calculation of the surface to second ortlee
surface energy is

1 _
oS = 2nok? / cosh pg (sinh2 Lo + cos? 9) 1/2} +
1 L

(sinh? y19 + cos® 6) M2 osh? o sinh poC+

sinh pg (sinh2 pio + cos® 9) 12 C} +

1 _
3 (sinh2 Lo + cos? 9) 12 cosh pg

(sinh2 Lo + cosh? ug) ¢+
)1/2

[a—

3 (sinh2 1o + cos 6
1

cosh 10(F —

(sinh? o + cos® 0) 372 cosh? po sinh? po¢? +

2 cosh Lo sinh? poC?+

)1/2

2
(sinh2 Lo + cos? 9)

1
= (sinh2 1o + cos 6

5 cosh po¢? | dcosf.  (8.29)

Here the first term between brackets ([..]) is the zeroth order, the d¢ean the
first order, and the third term the second order contribution to the sueiaergy.

The excess surface energy is the second order contribution to tleenfi-
ergy. In the spherical case the first order contribution to the surfaesyg van-
ishes; later in this section we will see this is also the case for the ellipsoidalebubb
if we allow for a variable surface tension over the bubble surface.

Kinetic energy

The kinetic energy of the fluid is

1

1
T= —2,0/ VO[> dV = —pwkcosh,uo/ OP,,dcosb. (8.30)
\%4 1
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Using the expression for the kinematic boundary condition (8.24) and the flo
potential®’ (8.25) the kinetic energy is

1 dan dQn dan
T=— h —QnP, —PF, . 31
prk cos 'uo/_lznj[dtQ / a0 };[dt ]dcosG (8.31)

Using the orthogonality conditions for the Legendre polynomials the kinetiggne
for every mode can be written as

dQ,.\ " 2 [da,\?
T = —prk cosh ppQ@Qy < Cii > 1 (dt) . (8.32)

Volume of an ellipsoidal bubble

The volume of an oblate ellipsoidal bubble is:

noopmT 2w
Vo= / / / hyhohodpdddy =
0 JO 0

. 171 .
ok / (3 sinh® y1 + cos? @ sinh u) dcosf. (8.33)
~1
To second order the volume is
! 1
V = 2xk3 / <3 sinh?® g 4 cos? @ sinh u0> + (8.34)
-1

cosh g (sinh2 pio + cos? 9) ¢+

1 1
<2 sinh® g 4 sinh pg cosh? g + 3 cos? @ sinh u0> ¢%dcos .

The second order volume correction to the surface energy can béatattusing

several approaches which are used in the spherical case. Two vdistessed
here: firstly the idea of Rayleigh [16] will be followed; this approach wk® a
discussed earlier in this section. Secondly, the approach of Benjaminil[2jew

discussed.

Volume correction according to Rayleigh
Considering the expression for the perturbatj8.26), now the first order contri-
bution to the volume is zero. Hence the volume is

4
V = gwk?’ sinh p1g cosh? iy + (8.35)

L1
ok’ / <2 sinh pq (sinh2 {10 + cos? 9) + sinh pg cosh? ,uo) ¢?dcos .
-1
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We now define an effective by V' = 47k? sinh i cosh? y19. Herek and the
‘undisturbed’k can be different. Avoiding a mean source term in the velocity
potential requires a small correction to the undisturbed second order

1 k
2 sinh 10 cosh? 119

/1
/ <2 sinh pg (sinh2 pio + cos® 0) + sinh y cosh? ,u0> C?dcosb.

k= k-

(8.36)

-1

The surface energy scales with. Therefore we write

_ 7.2
K = k- i - (8.37)
sinh pg cosh” g

1
1
/ (2 sinh pg (simh2 {10 + cos? 9) + sinh pg cosh? /m) ¢%dcos .

-1
The volume correction to the surface energy g,,) consists of the second order
contribution tok? and the zeroth order surface energy contribution (see (8.29)), i.e.

72

sinh pg cosh? g

1
1
/ (2 sinh pg (sinh2 to + cos? 9) + sinh pg cosh? ,u0> ¢?dcos 6
-1

0SRay = 2m0

1
/ (cosh 140 (sinh2 Lo + cos? 0) 1/2) dcos¥. (8.38)
-1

Volume correction according to Benjamin
Benjamin [2] assumes a second order contribution to the spherical radius

R(0,t) = a+ C(0,t) + (), 6(t) ~ O(e). (8.39)
For the ellipsoidal case this would be
w(0,t) = po + C(0,1) + (), 5(t) ~ O(e). (8.40)

The volume to second order gives

Lrr
V = 2mk3 / [<SSinh3uo+COSQQSinhuo>+ (8.41)
-1

cosh pg (sinh2 Lo + cos? 9) o+

1 1
<2 sinh?® g + sinh g cosh? g + 3 cos?  sinh ,u0> ¢ 2} dcosé.
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Notice there is an extra second order contribution dug tbor the volume to be
constanty must statisfy

1

1 1

5y = — / (2 sinh® g 4 sinh pg cosh? g + 3 cos?  sinh u0> ¢%dcost
-1

1 -1
[/ cosh pg (sinh2 Lo + cos? 9) dcos 0} . (8.42)
-1

Now the extra second order contribution to the surface ener§y {,) to account
for a constant volume is

1
0SBen = 27rak26/ [(sinh2 o + cos® 9) —1/2 cosh? o sinh g+
—1

sinh pg (simh2 Lo + cos? 0) 1/2} dcosf. (8.43)

So, for the volume correction one can choose between (8.38) and.(8.43)

Variable surface tension

We assumedby = 0 and an oblate ellipsoidal shape. Because there is no flow
around the bubble the pressure is equal outside the bubble; this would imply a
spherical bubble. We adjust the surface tension according to thetate\at the
ellipsoid in order to match the equal pressure difference along the surfac

We know
oV -n=AP, (8.44)
for a spherical bubble this becomes
aoi = AP, (8.45)
Qegq

with a., the equivalent radius. Hence, for constant pressure differémesurface
tension for an ellipsoidal bubble is

20’0
0) = . 8.46
)= a (8.46)

Using appendix C in chapter 7 this becomes

Vx2—1 inh? cos? §) %/
0_(0) =00 |2 X2/3 ' (Sln ,l;(;;tw ‘ )2 5 ) (847)
X sinh g cosh pg + cosh g (smh o + cos 0)

Using this expression the first order contribution to the surface en@rg9)(be-
comes zero.
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Figure 8.11: The non-dimensional frequency for the shape oscillatidnsiade (2,0)
versus the aspect ratio of the bubble. — the result usin@) 88 the volume correction;-
the result using (8.43) for the volume correction, and o—ardfes result.

Shape oscillation frequency

Averaged over an oscillation period the surface energy and kinetigyass equal.
The second order part of the surface energy can be taken fro®).(85h extra
second order surface contribution follows from the volume correctioB8.88) or
(8.43). The kinetic energy, which is already of second order, is givé#132). The
oscillation frequency follows from

L))

Wi T (8.48)
For every mode the energies can be calculated separately as a fundtieraspect
ratio of the undisturbed oblate ellipsoidal bubble. Figure 8.11 shows thgnaxis
metric shape oscillations of mode 2 as a function of the aspect ratio. Thecgphe
case is correct, but for higher aspect ratio the results deviate for lifidateon of
Meiron and experiments (see figure 8.10). What is also striking is the eliffer
results using the volume correction following Rayleigh’s approach or Banja
approach. Both approaches have a similar positive slope=af but deviate at
larger aspect ratios.

To the authors’ knowledge Meiron’s results can only partially be verifigd w
an analytical approach of Feng [3], who studied the change of shrapedume
oscillation frequencies for a small deviation from the spherical shape Fmode 2
shape oscillation he found the following relation

wy = wa g, [1 — 0.0658U°%] U < 1, (8.49)
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with w4, the shape oscillation frequency of the spherical bubblelatiae bub-

ble velocity. The frequencies decrease as the velocity around the bahbléhere-

fore the aspect ratio, increases. He explained this as follbWse phenomenon
may be mainly caused by an overall reduction in the surface restoring,fbue-
cause of the quiescent expansion of the bubble volume and reductica fnets
sure..”” So, our calculation seems to be incorrect. This might be due to the as-
sumption to set the undisturbed potentiglto zero and vary the surface tension to
come to the correct ellipsoidal ground shape of the bubble. In furtkeareh we
might have to take into account contributionsdaf to the surface energy, but this
complicates the calculations substantially.

The results of our calculation suggest that the surface energy is loatatad
correctly for aspect ratios larger than one. Therefore a hypothetisal is tested
where the kinetic energy is calculated according to (8.32) and the swafecgy
is set to the value of a spherical bubble. Hence it can be calculated &dr) (
which has to be slightly changed because the disturbéahes the unit of meter in
the spherical calculation, whereas it has no unit in the ellipsoidal calculdkios
frequency resulting from this approach is

"(T)  pad,\/x2—1 coshpy  du

Surprisingly this expression yields the same frequencies as the numetlicad c
lations of Meiron forn = 1,2,3, ..... So, it seems that the second order surface
energy does not change for changing aspect ratio if we assume Kdarsalts to
be correct; this is remarkable and cannot be explained this at this moment.

The results of the calculations in this section give rise to many questions, but
also give new insight in the shape oscillations on ellipsoidal bubbles; it toerd-
fore serve as a basis for further research.

The approach to take the average of the kinetic energy and the suntcg @& or-
der to calculate oscillation frequencies can also be used to calculate volaithee 0s
tion frequencies. In appendix B an analytical expression for the volwstiéaiion
frequency of an oblate ellipsoidal bubble is derived using this approach

8.4 Conclusion
The previous chapter dealt with bubbles of fixed ellipsoidal shape. |présent

chapter the bubble diameter is increased and shape oscillations set irubbde b
sizes just after the onset of shape oscillations two modes are found:isymax
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metric mode (2,0) and a non-axisymmetric mode (2,2). For larger bubbledebes
modes (2,0) and (2,2), more shape oscillation modes are detected.

The bubble motion is affected by the shape oscillations. The mode (2,0) is
linked with the bubble velocity. For bubble sizes right at the onset of shagie
lations, the stable spiraling motion changes into a pure zigzagging motion kecaus
the mode (2,2) forces the bubble to rise in a zigzag when this mode is a multiple
of the path frequency. Larger bubbles rise in more or less spiraling,gathaow
with large variations in velocity. Finally, multiple oscillations force the bubble into
an erratic path.

Wake oscillations link with velocity oscillations and therefore the mode (2,0)
oscillations. Experiments in tap water reveal that shape oscillations remain the
same as in purified water, but velocity oscillations are no longer linked withesha
oscillations, they drop to twice the path frequency as do the wake oscillations.
the previous chapter we observed wake instabilities behind bubbles wihapé
oscillations. Thus wake oscillations are not coupled with shape oscillatioss; th
coupling is only through oscillations in the velocity.

The analytical method to calculate shape oscillations on spherical bublges (e
[2, 7]) is extended to shape oscillations on ellipsoidal bubbles by calcultteng
surface and kinetic energies of an oscillating bubble. The limiting case for as
pect ratio one is calculated correctly but the method results in deviationstfiem
numerical theory by Meiron [13] for higher aspect ratios. Surprisinghen the
second order surface energy is assumed to be equal to the value phtrecal
case for all aspect ratios our results are identical to those of Meirois iFla
remarkable finding which should be investigated thoroughly in furtheareke

Appendix A: Surface of an oblate spheroid to second order

This appendix deals with the calculation of the surface of an oblate sphersad-
ond order. The result can be used to calculate the surface energydalthéation
of the shape oscillation frequency of an oblate spheroid.

From appendix C in chapter 7 we know that the area of surface of ateobla
ellipsoidal bubble is

T 1
S =2r / VEGdH = 27 / bV Edcos 6, (8.51)
0 1

with

E = b?cos® 0 + ¢? sin? 6 4 2(bbg — ccp) sin 6 cos O + b sin? 0 + c5 cos? 6,
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and

b(0, ) = kcoshpu(f,¢), c(0,p) = ksinhu(6, ¢).

In oblate ellipsoidal coordinateg (6, ) we assume the bubble surface to be given
by

(0, 0,t) = po +¢(0,¢,1),

where( is small. Now calculate the surface to second order. in

1
b = kcosh(p+¢) = kcosh pg + ksinh o + 5k cosh pol?,

1
¢ = ksinh(u+ e¢) = ksinh g + k cosh o + ik sinh po¢2,

bg = ksinh(u+ eC)Cy = ksinh poCy + k cosh 10y,
cg = kcosh(u+ )¢y = kcosh oy + ksinh poC(,
bby = k2 cosh pgsinh poCo + k> (sinh2 Lo + cosh? ,uo) (Cy,
ccg = k% cosh pgsinh poCy + k2 (sinh2 Lo + cosh? uo) (Cy,
bbg —ccy = 0,
b = k?cosh?(u+¢) = k? cosh? g +
2k? cosh g sinh ¢ + k> (sinh2 Lo 4 cosh? ,uo) 2,
¢ = K’sinh?(u+ ¢) = k? sinh? yo +
2k? cosh pug sinh ¢ + k> (sinh2 1o 4 cosh? ,uo) 2,
by = k*sinh®podf,
cg = k*cosh? uoCa.

Hence,

E = b?cos® 0+ *sin? 6 + b} sin? 0 + cj cos? 0
= k*[(sinh? o + cos? @) + 2 cosh pg sinh pio¢ +
{ (sinh? po + cosh? p19) ¢ + (sinh? p1o + cos® 6) (5 }] -

EY? — (s.inh2 f1o + cos? 9) 1/2 + % (sinh2 1o + cos® 9)_1/2
{2 cosh g sinh pg¢ + (sinh2 Lo + cosh? ,uo) CQ + (Simh2 Lo + cos? 0) Cg} —

1 _
5 (sinh2 fo + cos? 9) 32 cosh? o sinh? o2 | .
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Now the area of surface to second order is

1 .
S = 27k? / cosh pg (sinh2 Lo + cos? 9) 1/2} +
-1 L
(sinh2 Lo + cos? 9) 12 cosh? po sinh poC+
sinh g (Sinh2 {10 + cos? 9) 12 C] +

12 cosh g

% (sinh? y19 + cos® §)

(sinh2 110 + cosh? uo) 2+

)1/2

(sinh2 1o + cos 6 cosh HOCGQ —

1

2

1, 2\ —3/2 3 - 2
(smh o + cos 9) cosh” pg sinh® poC* +

~1/

2
(sinh2 Lo + cos? 0) ? cosh po sinh? po 2+

1
5 (sinh2 pio + cos? 9) /2 cosh poC? | deos 6. (8.52)

Here the first term between brackets ([..]) is the zeroth order, the deean the
first order, and the third term the second order contribution to the surfac

Appendix B: Oblate spheroid with volume oscillations

For a spherical bubble the frequency of volume oscillation has beenai@dby
Minnaert [15]. For the ellipsoidal bubble an expression for the fraquevill be

calculated and compared with the results of Strasberg [19] . Therefredder is
referred to Milne-Thomson [14, p. 543, example 34], where the potastglen

for an ellipsoid with volume oscillation

1 a b ¢\ [ d\
@ = —gabe ( Ty ) | e 69

The relation betweeh and the aspect ratip = ¢ is

2
Vaz+ = be and b2 4 \ = b o (8.54)
X [e— [e—

1 X2
For an oblate ellipsoid the flow potential becomes

o —1a2b (2(’1 . b) 71 [2arctansinh,u -] (8.55)
a

6 b bx
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Assume that the axis behave like

a = ap(l+ ecos(wt)),
b = bo(l+ ecos(wt)), (8.56)

with € a small constant. The potential energy is

1%
Epot = poo(V — V) — / pdV. (8.57)
Vo
The volume can be written as
4
V= gwa%bo(l + ecos(wt))?. (8.58)
Hence,
4 .
V-—V= gwa%bo [3e cos(wt) + 3€% cos? (wt) + € COSS(wt)] . (8.59)
If we assume adiabatic behavior, we can say
V Y
W=ty = p=m (1) . (860

with ~ is the ratio of the heat capacities. Hence,

1
_/Vpdv _ PV <‘$>7 _1] (8.61)

Vo 1-v
= —paVo |:3€ cos(wt) + 2(2 —37y)e? cos?(wt) + O(e?) ] .

The potential energy now becomes

Epot = ngOVO'yG2 cos? wt. (8.62)

The kinetic energy is

1

1
T = —Qp/ VO dV = —pTrk:coshuo/ P, dcos b. (8.63)
\% 1

Substituting the flow potential from (8.55) in this equation yields

T = % {m — 2arctan(sinh(ug)} aébng Sin2(wt)62_ (8.64)
ag — 0
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Figure 8.12:The non-dimensionalized frequency of the volume osailtatias function
of the aspect ratio of the bubble. — Equation (8.65) and * titan from Strasberg [19].

Taking the time averaged energies over an oscillation period and takingtére po
tial energy to be equal to the kinetic energy the volume oscillation frequeicy a
function of the aspect ratio is

2, R Y '
co T

The frequency is increasing with the aspect ratio. Figure 8.12 showthibagua-
tion gives similar values for the volume oscillation frequency as Strasbéjg [1
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Chapter 9

Conclusions and outlook

In chapter 1 several aspects on solid sphere and bubble motion wevsstidc
which continue to raise many questions in the research community. This thesis
addressed several of these aspects and answered some of thesgsenhr ques-
tions, which were related to the different motions, shapes and wake sesidfl
these bodies, the forces acting on these bodies and the interacting bgiateen
wake and shape instabilities. This chapter will provide a general discusktbe
previous conclusions in each chapter and will focus on recommendatiofugiire
research on sphere and bubble motion.

Chapter 3 focused on flow visualizations of the wake behind solid spheves
ing under the action of gravity. This research revealed differencestétivakes
behind spheres held fixed, studied by Schouveiler & Provansal fidbJahnson
& Patel [7]. The wake behind some heavy falling spheres clearly shaivpih
vortices shedding from the sphere surface, whereas the wake bmthigrdfalling
spheres and rising spheres is not dominated by vortex shedding. i§hemn-
tinuous formation of vorticity into two vortex threads of opposite-signed vitytic
These threads cross and kinks are formed on these threads that fevalgplinto
hairpin vortex like structures. Hence, with respect to the wake structiedevel-
oped, the sphere-fluid density ratio is important. The experiments preserites!
thesis show that rising spheres are more susceptible to instabilities in the mebke a
their path is influenced by these instabilities. For all spheres the doubkdtde
wake structure seems to be a basic feature, even for large Reynoldsnsu@bap-
ter 5 investigated the effect of the density ratio on both sphere path arematde
thoroughly.

In chapter 4 the proposal, given originally by Karamanev & Nikolov [9]rde

171
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place the standard drag relation 6Y,(Re) = 0.95, for spheres with a density
ratio ps/p < 0.3 and Re > 130, was examined. The experiments with spheres
for which ps/p = 0.02 showed a rather poor agreement with this proposal. This
is consistent with the view that it is more appropriate to replace the standegd dr
curve by a series of curves parameterized by the value, . Each of these
curves starting off from the standard drag curve at a higher Reynalader than

130, namely betweeRe = 205.8 and Re = 211.9. These values are directly re-
lated to the work of D&ek [6] who found that the onset of path instability for freely
moving spheres depends on the density ratio and occurs befieen205.8 and

Re = 211.9. For any individual case above these Reynolds numbers a substan-
tial difference may be found between the measured drag and the deaglyivthe
standard drag relation. This difference is largest for light spheexsause these
spheres do not rise along any preferred path once path oscillatioms setvas
proposed, and verified with experiments, that the drag force consigfsiefiscous
contribution that may be estimated from the standard drag curve by evaltizing
Reynolds number using the actual value of the velocity, and (ii) an inertidiieo
bution that arises essentially by the same mechanisms that cause the lift-induced
drag on airplane wings.

The study on freely rising spheres is connected with work done on vortex
induced vibrations, especially with studies of the motion of elastically mounted
and tethered spheres. The description of the origin of the lift force om spheres
in Govardhan & Williamson [4] is essentially similar to the one presented in this
thesis. It would be interesting to combine their DPIV measurements of theespher
wakes with the simple model of the drag force. It may even be possible to estimate
the vortex-flow forces experienced by the spheres on using thesskpns derived
by Kambe [8] and Howe [5].

In chapter 5 the numerical work of Bak and co-workers [6] was verified. Their
work is the first to give a detailed analysis of the instabilities and transitions in
the motion of spheres moving freely under the action of gravity. The oasens
made in this thesis agree very well with their description of the quite distinct fea-
tures of sphere motion in different regimes of tldg ps/p) parameter space.

The Schlieren flow visualizations did not recover the finding oB&ket al.
on the absence of a bifid wake behind the spheres after the path instabdlity ha
set in. In all the pictures the wake consists, entirely or in part, of two counte
rotating vortices as can also be seen in earlier studies on the wake stsuature
freely moving spheres in chapter 3.

Duseket al. [6] showed that the transient state for freely moving spheres can
be rather long; hence the Schlieren experiments presented in this thesied ca
out in a small tank of 50 cm in height, might be carried out in this transient state.
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Therefore an enlargement of the water tank in the Schlieren setup is artamipor
issue for future research. Furthermore, the Schlieren technique limitettefi
view to the diameter of the largest lens, 10 cm. To capture low frequencyg wak
oscillations, as were found by Beket al, this field of view should be enlarged.

Chapters 3 to 5 clearly show the importance of the sphere and fluid prapehtén
looking at sphere motion. The study of 8aket al. and the present experimental
verification make clear that the motion of spheres can be completely diffgeent
pending on the value of the parameters sphere-fluid densitygatioand Galileo
numberG. This will also have its effect on the wake behind the sphere and the drag
experienced by it. The use of one 'standard’ drag curve for allrgsh&vhich only
depends on the Reynolds number, is therefore incorrect. Futurecesdwuld
provide drag curves parameterized®@yandp,/p (or Re andG or ps/p and Re)

to account for this difference in sphere motion.

Chapter 6 showed the general aspects of single bubble motion. The Ipatble
changes from a stable spiral into a pure zigzag when shape oscillatians Bke
bubbles reach rise velocities as high as measured by Duineveld [2]; tHsois a
reflected in the low drag coefficients. This justifies the statement that thei-expe
ments were carried out in ultra clean water. It is shown that the minimum rafius o
curvature of the bubble shape is a better measure for the rise velocity mithée
than the bubble aspect ratio, as was put forward by Duineveld.

Chapter 7 focussed on bubbles that rise without shape oscillations. uliideb

rise with their minor axis aligned with the path, as was also observed by Ellingsen
& Risso [3]. Right after the onset of path instability the bubbles rise in a pure
spiral, whereas for somewhat larger bubbles the path becomes flattethdlea
motion becomes unsteady.

For the purely spiraling bubbles the lift force in normal and bi-normal direc
tion are equal; a feature which has not been reported before in anragpéal
study. Only numerical work by Mougin & Magnaudet [14] shows identiealilts.
Analysis of the orientation of the vortex plane behind a spiraling bubblercaosfi
this equality of lift in normal and bi-normal direction. Implementing this feature
into the equations of motion for a purely spiraling bubble yields a simple relation
between the characteristics of the spiral and the shape of the bubblehadls s
that only a limited number of combinations of spiral frequency, pitch, anidsas
possible.

Analysis of the vorticity structure behind spiraling bubbles reveals that the
wake consists of two counter-rotating vortex threads, which accourthéolift
necessary to curve the bubble path. Analysis of the strength of theselshea-
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ables us to estimate the lift force; the estimate is in good agreement with the ex-
periments. Furthermore it is shown that the measured drag can be modelled with
contribution related to viscous drag and a contribution induced by the Idefdhe
lift-induced drag, which is induced instantaneously. This model for dragrigar

to the case of spheres moving through a liquid, as discussed in chapter 4.

In chapter 8 the bubble diameter is increased and shape oscillations sairin. F
bubble sizes just after the onset of shape oscillations two shape oscillataesmo
are found: an axisymmetric mode (2,0) and a non-axisymmetric mode (2,2dsas w
also found by Lunde & Perkins [11]. For larger bubbles, besidegugacies for
modes (2,0) and (2,2), more frequencies are detected. These fcezgieannot be
linked with higher modes and are probably due to non-linear effects.

The bubble motion is affected by shape oscillations; the frequency of ri2gje (
is linked with the frequency of bubble velocity oscillations. For bubble sizgg r
at the onset of shape oscillations the stable spiraling motion changes intela pur
zigzagging motion, because the mode (2,2) forces the bubble to rise in @ zigza
when this mode is a multiple of the path frequency. Larger bubbles rise in more
or less spiraling paths, but now with large variations in velocity. Finally multiple
oscillations force the bubble into an erratic path.

Wake oscillations link with velocity oscillations and therefore the mode (2,0)
oscillations. Experiments in tap water reveal that shape oscillations remain the
same as in purified water, but velocity oscillations are no longer linked withesha
oscillations, they drop to twice the path frequency as do the wake oscillations.
In chapter 7 it is observed that wake instabilities can be present behbixelsu
without shape oscillations; hence, the wake oscillations are not couplegheife
oscillations, this coupling is only through oscillations in the velocity.

It would be interesting to study the forces and torques acting on bublites pe
forming shape oscillations. It is possible to reconstruct the 3D bubbleesloaip
entation and path from two perpendicular views on the bubble if the bubbte is a
oblate ellipsoid. But when shape oscillations set in this reconstruction is gerdon
valid. Hence, a third view on the bubble is necessary. Positioning a caméoa o
of the water tank to capture the top view of the bubble would solve this problem.
Of course, bubbles moving in and out of focus of the top camera are raems
which have to be solved.

To better understand the shape oscillations the analytical method to calculate
shape oscillations on spherical bubbles [e.g. 1, 10] was extendede sBail-
lations on ellipsoidal bubbles. The limiting case for aspect ratio one is caldulate
correctly, but the method results in deviations from the results of numerimd w
by Meiron [12] for higher aspect ratios. Future research shouldsf@n a cor-
rect closure of the model, which should be compared with experimentdisesu
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shape oscillation frequencies. Further analysis of this comparison shimyidle
a better understanding of the difference between our experiment#israsd the
theory of Meiron [12] as we saw in figure 8.10.

Recapitalizing all results, we see that there are remarkable agreemerge e
motion of spheres and bubbles. Although the boundary conditions aegediff
the effect of the generated vorticity at the surfaces of these bodiegimmtbtion
is similar; in both cases we see wake structures consisting of two vortexithrea
And the drag experienced by these bodies moving at high Reynolds nsicdrer
both be modelled correctly with a viscous contribution and a contribution related
to lift. The orientation of the vortex plane (i.e. the angle between the vorter plan
and the horizontal plane) which is related to the lift induced drag variesseet®1
and 24 for a bubble and between 25 and’38r a sphere. Further research should
provide more information of the dependance of this angle on the sphétein-
sity ratio. Does an even lighter sphere give smaller vortex plane angleish@s
angle more dependent on the amount of vorticity produced at the serfzaated
to this is the relative contribution of the lift-induced drag to the total drag éxper
enced by the body. For a bubble the lift induced-drag is approximateRO2ZA-
of the total drag. For a sphere this percentage is 21-26 %. Thesatmges are
more or less equal, but the vortex plane angle is larger for a spheregek lartex
plane angle would imply a larger lift-induced drag. Why is the relative contribu
tion of the lift-induced drag to the total drag in the case of a sphere notrhigdue
in the case of a bubble? The reason is the boundary condition, which islgpno
boundary condition for a sphere compared to a no-shear conditiontdablale.
Therefore the relative contribution of the lift-induced drag to the total dnaght
be smaller. An important subject for further research would be to invéstihe
dependence of the relative contribution of the lift-induced drag to the todglah
the sphere-fluid density ratio and the boundary condition.

Besides the differences in boundary condition and density there is eediffe
in shape. Therefore it would be interesting to study ellipsoidal particlesneSo
experiments with flattened polystyrene spheres are carried out. Thasgnesnts
showed that the aspect ratio of the ellipsoidal particle cannot be fully atedr
also the axisymmetry after the sphere is flattened might be lost. Figure 9.1 shows
the angled between the path of an ellipsoidal particle and the horizontal plane
and the angle between the minor axis of the particle and the horizontal plaae fo
particle rising along a zigzag path through water. We clearly see that ttiel@a
not always aligned with its path; when the particle rises straight up the pagticle
aligned with its path and both angles are¢ 98ut when the particle moves through
the symmetry axis of the zigzag path the particle 'overshoots’ the path. Te an
between the minor axis and the horizontal plane is larger than the angle aftthe p
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Figure 9.1:— Angle between the tangent and the horizontal plane, - -edpgfiween the
minor axis and the horizontal plane for an ellipsoidal @éetip,/p = 0.02, D.,=5.9 mm,
andy = 1.4.). Angles are given if.

with the horizontal plane. Now the ellipsoidal particle is no longer aligned with its
path inertial forces perpendicular to the path of the particle are geneigteglis,
because the added mass tensor no longer is a diagonal matrix.

All flattened spheres that were tested had a small non-axisymmetry of about
2-5%. This caused the particle always to move in a zigzag. Probably & zaiha
can be only be observed for perfectly axisymmetric ellipsoids. This is retated
the observed zigzag paths for bubbles with non-axisymmetric shape osc#lago
we saw in chapter 8.

It would be interesting to study the drag experienced by these ellipsoifisreBe
one could test the drag model as it is presented in this thesis it is neceshameto
an expression for the viscous contribution to the drag. For spherestitasd drag
curve is used and for bubbles Moore’s drag is used. In future reséae viscous
drag could be measured using heavy ellipsoidal particles or ellipsoiditipar
held fixed. Finally a study of the wake structures behind ellipsoidal particle$o
be conducted to provide information of the orientation of the vortex planemteh
the particle. In this research it is important to focus on the effect of thsityen
ratio; for small density ratios a comparison could be made with numerical work
of Mougin & Magnaudet [13] on ellipsoidal bubbles. Furthermore thekwair
Duseket al. [6] could be extended to ellipsoidal particles.
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Summary

Bubble and patrticle laden flows are important in a wide range of industrél an
geophysical processes. This broad application field stimulated bubblyaatide
laden flow research. In the upper limit research focuses on dengay haglen
flows, which provides overall statistical properties of such flows. Inldmeer
limit the research addresses the problem of single bubble and particleidreha
providing a more fundamental knowledge of the hydrodynamic forcesgaotin
bodies. This thesis focuses on both single solid particle and bubble behavio

Chapter 2 discusses the experimental Schlieren setup which is used tzgisua
wake structures behind rising and falling spheres and rising bubbleseraogunt
water. The advantage of the Schlieren technique compared to other floal-vis
ization techniques, like PIV and dye-injection, is the ability to visualize the entire
3D flow field without contaminating the water. The last being important for the
visualization of wake structures behind bubbles rising in purified water.

Chapter 3 shows that the wake structures behind solid spheres risiaitjray f
freely in liquids under the action of gravity show remarkable differenceth¢o
wake structures observed behind spheres held fixed. The wakeltseimre falling
spheres consists of hairpin vortices shedding from the sphere surfde wake
behind other falling spheres and behind rising spheres are not dombyavedtex
shedding, but consist of two continuous vortex threads of oppositedigprticity.
These threads cross and kinks are formed on these threads, thatdenalgp into
hairpin vortex like structures. Furthermore, the double-threaded waketwe
seems to be a basic feature, even for large Reynolds numbers.

Related to these differences in sphere dynamics is the research of K&nama
and co-workers (Karamanev and Nikolov 1992; Karamanev, ChadaNeayer
1996; Karamanev 2001) on the behavior of spheres rising freely inndddiean
fluid with a sphere-fluid density ratio less than 0.3. They propose to refdlarce
these spheres, the standard relation for the drag coeffiCigrats a function of the
Reynolds numbeRe by Cp = 0.95 for Re > 130. In chapter 4 it is shown that
this is not supported by our experiments. It is shown, that the drag tmmsists
of (i) a viscous contribution that may be estimated from the standard drag oyr
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evaluating the Reynolds number using the actual value of the velocity, araoh (ii)
inertial contribution that arises essentially by the same mechanisms that cause th
lift-induced drag on airplane wings.

The two parameters controlling the rise or fall velocity are the sphere-farid d
sity ratiops/p and the Galileo numbe¥. Jenny, D&ek & Bouchet (2003) studied
the instability and the transition of the motion of solid spheres in (6isps/p)
parameter space numerically. They showed that the parameter space uhay be
vided into regions with distinct features of the sphere trajectories; fumthier an
asymmetry around a density ratio of one is found. In chapter 5 an expéaimen
investigation is presented in which the interesting conclusions of their stedy ar
verified. The experiments agree well with what was observed in their ricaher
study. However, our flow visualizations of the wakes of the spheresyalahow a
double-threaded wake. This contradicts the conclusion of Jen$gkK8Bouchet,
namely the absence of a bifid wake structure.

In chapter 6 the general features of single bubbles @., < 6mm), rising in
purified water, are studied. The smallest bubbles are oblate ellipsoids nésitig
linearly. Larger bubbles are oblate ellipsoids in spiraling motion. For eveedar
bubbles shape oscillations set in, strongly influencing the bubble path. &@bmp
son of the rise velocity and shape of the bubble with earlier researctsshawthe
used water is indeed pure, not contaminated with surfactants.

Chapter 7 focuses on oblate ellipsoidal bubbles that rise without shajle-os
tions. It is shown that the measured drag on the bubble consists of a atiotrib
related to viscous drag and a contribution related to the lift acting on the hubble
which is induced instantaneously. It seems that variations in the viscotriécen
tion to the drag associated with the ‘building-up’ of the vorticity field by diffusio
and convection, important at low Reynolds numbers, is negligible at highdRey
numbers. This is also the case for solid spheres.

Chapter 8 focuses on larger bubbles for which shape oscillations s€bin.
bubble sizes right at the onset of shape oscillations the stable spiraling motion
changes into a pure zigzagging motion. This is due to a coupling with the non-
axi-symmetric mode (2,2) shape oscillation. Larger bubbles rise in more or less
helicoidal paths. Finally, multiple shape oscillations force the bubble into atierr
path. All bubbles show an axi-symmetric mode (2,0) shape oscillation which is
coupled with velocity oscillations and therefore with oscillations in the wake.

An analytical method to calculate shape oscillations on ellipsoidal bubbles is
presented. The limiting case for aspect ratio one is calculated correctipéut
method results in deviations from numerical theory by Meiron (1989) fondrig
aspect ratios.



Samenvatting

Stromingen met bellen en deeltjes zijn belangrijk in vele indék&t®en geofysische
processen. Dit grote toepassingsgebied heeft het onderzoektr@aimgen met
bellen en deeltjes gestimuleerd. Aan de ene kant richt het onderzoekzida
stroming met een grote dichtheid van bellen of deeltjes. Dit geeft de statistische
eigenschappen van zulke stromingen. Aan de andere kant wordkekegenaar

het gedrag vaién bel of deeltje. Dit geeft een fundamenteel inzicht in de hydro-
dynamische krachten, die werken op deze lichamen. Dit proefschhftzich op

het gedrag va@én deeltje van vaste vorm één bel.

In hoofdstuk 2 wordt een experimentele Schlieren opstelling bespralken,
gebruikt is voor de visualisatie van vorticiteitsstructuren achter opstijgendal-
lende sferische deeltjes en opstijgende bellen in stilstaand water. Heteebord
van de Schlieren techniek ten opzichte van andere stromingsvisualisatietezrh
zoals PIV en inkt-injectie, is, dat Schlieren het gehele 3D stromingsveld visu
aliseert zonder het water te vervuilen. Dit is vooral van belang vodeaoek
naar het gedrag van bellen in zuiver water.

Hoofdstuk 3 laat zien, dat de vorticiteitsstructuren achter sferischgadeean
vaste vorm (het zog), die opstijgen of vallen, opmerkelijke verschilletomen
met deeltjes, die vastgehouden worden. Het zog achter sommige vallezitiesde
bestaat uit zogenaamde ’hairpin’ vortices, die afgeschud wordeheataspperviak
van het deeltje. Het zog achter andere vallende deeltjes en opstijgesitiesde
bestaat uit twee continue vortexdraden van tegengestelde vorticiteit.vDdeg-
draden kruizen, waarna lussen ontstaan, die uiteindelijk overgaandtusem, die
lijken op ’hairpin’ vortices. Verder valt op, dat de dubbele vortexstruceen stan-
daard eigenschap is voor het zog van deeltjes, zelfs voor hoge Rsygetallen.

Gerelateerd aan deze verschillen in de dynamica van deeltjes is hetagklerz
van Karamanev en collega’s (Karamanev and Nikolov 1992; Karam@&mewarie
& Mayer 1996; Karamanev 2001) over het gedrag van opstijgendgeteim een
Newtoniaanse vloeistof voor een deeltje-vloeistof dichtheidsverhoudigigek
dan 0.3. Zij stellen voor om de standaard relatie voor de weerstagitisémtC'p
als functie van het Reynolds-getal te vervangen dogr= 0.95 voor Re > 130.
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In hoofdstuk 4 wordt aangetoond, dat onze experimenten dit gedeabeavesti-
gen. De weerstand blijkt te bestaan uit twee bijdragen (i) een viskeuzedmjdr
die afgeschat kan worden met de standaard weerstandsrelatiekgetkend van
het actuele Reynolds-getal, en (ii) een bijdrage, die voortkomt uit dezeltetha-
nismen als lift-ggnduceerde weerstand op vliegtuigvleugels.

De twee parameters, die de stijg- of valsnelheid controleren zijn de dichtheids
verhouding tussen deeltje en vioeistaf p en het Galileo-getal. Jenny, D&ek
& Bouchet (2003) bestudeerden de instabiliteit en transitie van de begvegin
vaste deeltjes in deZé&-, ps/p)-parameterruimte. Zij toonden aan, dat de parame-
terruimte opgedeeld kan worden in regimes met specifieke eigenschagqrestev
paden, die de deeltjes doorlopen. De parameterruimte laat duidelijk een asymme
trie zien rond een dichtheidsverhouding v@&n. Hoofdstuk 5 toont een experi-
menteel onderzoek waarin de interesante conclusions van hun oeklevacden
geveriféerd. De experimenten komen goed overeen met de bevindingen in hun
numerieke onderzoek. Echter, de visualisaties van het zog achteeliiesltaat
altijd een dubbeldraads zog zien. Dit spreekt de conclusie van JenBgk[X
Bouchet, over het ontbreken van een dubbeldraads zog, tegen.

In hoofdstuk 6 worden de algemene eigenschappen van eem beld., <
6mm) opstijgend in zuiver water bestudeerd. De kleinste bellen zijn afgeplatte el-
lipsoiden, die recht omhoog gaan en grotere bellen volgen een spiradimag
grotere bellen vertonen vormoscillaties, die het pad steikvizeden. Vergelijk-
ing van de opstijgsnelheid en de belvorm met eerder onderzoek togrdatamet
gebruikte water inderdaad zuiver is.

Hoofdstuk 7 richt zich op afgeplatte ellipsoiden zonder vormoscillaties. Het
blijkt dat de weerstand, die werkt op de bel, athangt van de viskeeszstand
en een bijdrage grduceerd door de liftkracht werkend op de bel. Variaties in de
viskeuze bijdrage door opbouw van het vorticiteitsveld door diffusieagvectie
zijn verwaarloosbaar voor hoge Reynolds-getallen.

Hoofdstuk 8 richt zich op grotere bellen met vormoscilaties. Voor belgreotte
net na het ontstaan van vormoscilaties gaat de spiraalbeweging overiigeag-
beweging. Dit komt door een koppeling met de niet-axisymmetrisch mode (2,2)
vormoscillatie. Bij nog grotere bellen zorgen meerdere vormoscillaties ervoo
dat de bel opstijgt in een grillig pad. Alle bellen vertonen een axisymmetrische
mode (2,0) vormoscillatie, die is gekoppeld aan oscillaties in de snelheid van de
bel en daardoor ook aan oscillaties in het zog achter de bel.

Een analytische methode voor het berekenen van vormoscillaties opgeen af
platte ellipsoidale bel is behandeld. Het limietgeval voor een afplattinggraad v
€én, een bolvormige bel, wordt met deze methode correct berekenter Bator
grotere afplattingsgraden treden er afwijkingen op ten opzichte vanrdenmeke
berekeningen van Meiron (1989).
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