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Chapter 1

Introduction

This chapter will give a brief introduction to the motion of a single solid sphere
and a bubble in a liquid. At the beginning of each one of the next chapters the
introduction will be extended with the particular aspects discussed in that chapter.
At the end of this chapter a guide through this thesis will be given.

1.1 Sphere and bubble motion

Bubble and particle laden flows can be found in a wide range of industrial and geo-
physical processes. They play an important role in mixing in chemical reactors,
heat exchangers, atmospheric and oceanic flows. This broad application field stim-
ulated bubbly and particles laden flow research. It addresses many questions in a
broad range of Reynolds numbers. In the upper limit the research focuses on dense,
highly laden flows. This research provides the overall statistical properties of such
flows. In the lower limit the research addresses the problem of single bubble or
particle behavior, providing a more fundamental knowledge of the hydrodynamic
forces acting on these bodies. This thesis focuses on these fundamentalaspects.
It studies the behavior of single, rising or ascending, solid spherical particles and
rising bubbles in a quiescent Newtonian liquid.

The driving force on a sphere or bubble moving through a quiescent liquid is buoy-
ancy. Therefore one might expect an axi-symmetric body to move along a vertical
path through the liquid. This is indeed true for small Reynolds numbers. But that
this idea does not always hold is shown by Leonardo da Vinci (1452-1519) [23, 25].
He was the first who reported on the peculiar path a rising bubble follows through
stagnant water. Figure 1.1 shows a sketch of one of his observations in which the
bubble is rising along a helicoidal path.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1:Leonardo da Vinci’s sketch of a spiraling bubble. Reproduced from [23].

Similar observations are made for spheres moving in air. In 1726 Sir Isaac New-
ton reported on experiments done in 1719 by Dr. Desaguliers. Desaguliers mea-
sured the sphere drag by timing the fall of spherically shaped inflated hog bladders.
He found that”the inflated bladders did not always fall directly down, but some-
times fluttered a little in the air and waved to and fro as they were descending”. The
reason for this fluttering is the unsteady wake behind the sphere causing fluctuating
forces and moments acting on it when it moves freely through the fluid [29].

The wake behind solid spheres has been a research topic for quite some years.
Already in 1927 Ermisch [6] reported on unsteady wakes behind fixed spheres.
Later more numerical and experimental studies followed [7, 11, 15, 22, 24, 26].
Only recently the wakes of freely moving spheres have been analyzed [10, 17].
These wake structures are important to understand the motion of spheres moving
freely through a liquid. The inertia of these spheres, and therefore the sphere-fluid
density ratio, is also of great importance when the motion is unsteady. It might
have an important influence on the wake of the sphere. Therefore a moreextensive
research into the wake structures of spheres in a wide range of Reynolds numbers
and sphere-fluid density ratios is necessary.

Related to the drag experiments by Desaguliers are the findings of Karamanev
and co-workers [12–14]. They state that at Reynolds numbers largerthan about
130 the drag experienced by light spheres (sphere-fluid density ratio smaller than
0.3) is considerably larger than the drag experienced by heavy spheres. Recalling
the previous discussion it might be expected that these observations are connected
with changes in the wake structures. Therefore this light sphere motion will be
investigated more thoroughly. Analysis of the forces acting on the spheresmust
help us to explain Karamanev’s findings.

More recently (2004) Dǔsek and co-workers [10] published excellent numer-
ical work on sphere motion in a Newtonian fluid. They found that indeed the
motion of the sphere is not symmetric about a sphere-fluid density ratio of oneas
one can conclude from the work by Karamanev and co-workers. Several regimes
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of sphere motion (e.g. straight, zigzagging, chaotic) have been found for differ-
ent sphere-fluid density ratios and sphere diameters. Their work givesanswers to
many problems encountered in research related to freely moving spheres,but it also
raises several new questions related to wake structures behind those spheres. By
verifying their numerical work with an experimental study some of these questions
will be addressed.

From solid spheres moving in liquids some links can be made to bubbles rising in
liquids, but some important differences remain. Firstly, bubbles and solid spheres
have a different boundary condition; solid spheres have a no-slip condition at their
surface, while on bubble surfaces slip is allowed and a no-shear condition is im-
posed, when the bubble moves through a sufficiently clean liquid. Secondly, be-
cause of the small density of the bubbles compared to that of the liquid, the inertia
in the system is almost entirely due to accelerated or decelerated liquid. Therefore,
the liquid inertia plays an important role in the analysis of the hydrodynamic forces
predicting bubble motion. Thirdly, the bubble shape is not fixed; local pressures
around the bubble will cause local curvatures, leading to bubble shapeswhich are
non-spherical. For larger bubbles shape oscillations set in, causing inertia effects
which play an important role in the prediction of bubble motion.

Lindt [16] gives a nice overview of bubble motion for a wide range of bubble
diameters. Small bubbles rise rectilinearly, for somewhat larger ones the path is a
zigzag or spiral. Still larger bubbles start to experience shape oscillations. Finally,
the bubble assumes a so-called spherical cap shape and rises rectilinearly.

For bubbles performing path oscillations, without shape oscillations, the lit-
erature provides much information on results of the path followed by the bubble
[1, 2, 8, 9, 19]. In recent studies more extensive research has been done to explain
this bubble motion in terms of the flow field behind the bubble [3–5, 17, 20, 28].
Up to now only recent numerical work of Mougin & Magnaudet [21] reallyquan-
tifies the forces and torques acting on bubbles of fixed ellipsoidal shape related to
its wake. They state:”...the present paper focuses on a description of the forces
and torques experienced by the bubble along its path. Achieving an equivalent
determination of forces and torques through a laboratory experiment is very chal-
lenging; only partial answers have yet been provided (Ellingsen & Risso2001)...”
To provide more conclusive answers the regime of fixed shaped bubblesperform-
ing path oscillations will be investigated thoroughly. The wake visualizations of
De Vries [27, 28] will be repeated to have a more detailed knowledge of the wake
structures. The forces and torques will be calculated to be able to revealtheir rela-
tion with the bubble wake and to understand the bubble motion in general.

In the regime of larger bubbles with shape oscillations, before the regime with
spherical caps sets in, the literature is less extensive. Lunde & Perkins [18] dis-
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cussed the effect of shape oscillations on the bubble motion. Other researchers [4,
17] provide some information on wake structures behind such bubbles in conta-
minated water. But detailed knowledge of their wakes and the relation to bubble
dynamics, especially shape oscillations, in this regime is not available. Analysis
of the oscillations in path, shape, and wake have to be done in order to reveal new
relations between these three aspects and understand bubble motion in this regime.

This introduction addressed several research topics to be dealt with in thisthe-
sis. The next section will provide an overview of the chapters in which these topics
will be discussed.

1.2 A guide through the chapters

The introduction stressed the necessity for an adequate understanding of the wake
behind solid spheres and bubbles. In chapter 2 the experimental setup to analyze
the wake structures of spheres and bubbles will be introduced. Thereafter the thesis
is divided into two main parts: one part on the motion of particles (chapter 3,4, and
5) and one part on the motion of bubbles (chapter 6,7, and 8).

Chapter 3 discusses general features of wake structures behind spheres rising
or falling in quiescent water at Reynolds numbers ranging between 205 and 4623.
Chapter 4 is inspired by the work by Karamanev and co-workers [12–14]. It gives a
extensive discussion on the motion of very light spheres, with a sphere-fluid density
ratio of 0.02. It addresses the question why the drag experienced by these spheres
is considerably larger than the drag experienced by heavy spheres atReynolds
numbers larger than about 130. Chapter 5 is a reaction on the numerical work by
Dušek and co-workers [10]. In their numerical study they found several regimes of
sphere motion which have not been reported in literature before. Their numerical
results are verified by approaching this problem experimentally.

Chapter 6 gives the general aspects of single bubble motion. It reports on
bubble dynamics starting with small rectilinearly rising bubbles, continuing with
bubbles performing path oscillations and ending with bubbles performing pathand
shape oscillations. This chapter is an introduction to the last two chapters. Chap-
ter 7 discusses the dynamics of oblate ellipsoidal bubbles of fixed shape. It carries
on on the work of Ellingsen & Risso [5]. Forces and torques are calculated and
visualizations of the wake structures are used to model drag and lift experienced
by these bubbles. Chapter 8 elaborates on the work by Lunde & Perkins [18]. It
discusses larger bubbles which also perform shape oscillations and addresses the
question what the relation is between the bubble path, shape and wake.

Chapter 9 is left to conclusions and recommendations for future research.
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Chapter 2

The thermographic Schlieren
setup‡

This chapter presents the stereoscopic and thermographic Schlieren setup used for
wake visualization behind rising and falling spheres and rising bubbles in water.
The Schlieren method has advantages over other methods like PIV and dye injec-
tion, because it is able to visualize the entire 3D flow field without contaminating
the fluid. De Vries [11] was one of the first to report on wake visualizations behind
rising bubbles using a Schlieren setup. His setup has been improved for higher
sensitivity to capture more details in the Schlieren images.

————————————————————————————————

2.1 Introduction

The Schlieren technique is a well-known technique to visualize density differences
in a transparent medium [9]. Density differences cause a change in lightrefrac-
tion index of the medium. Light travelling through the medium will be refracted
differently depending on the local density of the medium. A technique similar
to the Schlieren technique is the shadowgraph technique. Whereas the Schlieren
technique visualizes the spacial derivative of the refraction index, the shadowgraph
visualizes the second spatial derivative of the refraction index. Therefore, in most
cases, Schlieren is much more sensitive than shadowgraphy. A famous shadow-
graph image is the blurry view an automobile driver has, looking through the heated

‡adapted from: C.H.J. Veldhuis, M. Versluis, & C.D. Ohl,Notes on a thermographic Schlieren
setup, to be submitted to Exp. Fluids (2007)

9



10 CHAPTER 2. THE THERMOGRAPHIC SCHLIEREN SETUP

air just above a sun heated road or if one looks through the hot air rising above a
candle.

Both Schlieren and shadowgraphy are broadly used in compressible flows, in
which pressure fluctuations and therefore density differences are common. We
want to visualize wake structures behind freely rising and falling spheresand ris-
ing bubbles in quiescent water. De Vries [11] was one of the first to report on wake
visualizations behind rising spheres using a Schlieren setup. His setup hasbeen
improved for higher sensitivity to capture more details in the Schlieren images.

Figure 2.1:Basic idea of a Schlieren setup. The dark spot in the measurement section
resembles a density difference. The dotted lines resemble light rays.

The basic idea of a Schlieren setup is shown in figure 2.1. A point light source is
positioned in the focal point of a positive lens, generating a parallel bundle of light
behind the lens. A second positive lens focuses the light into its focal point,where
a knife edge is used to cut off the light. Any light ray not affected by a density
difference in the measurement section will be cut off by the knife edge. Light rays
which are bend by density differences will be projected onto the screen.

In reality the light source is not a perfect point light source. Figure 2.2 shows a
sketch of a Schlieren setup with an extended light source. More informationcan
be found in [4], on which part of this discussion is based.

Figure 2.2:Basic idea of a Schlieren setup with an extended light source.



2.2. FLOW VISUALIZATION METHODS 11

A point a in the source emits a light bundleabc which focuses ona′ in the
source-image plane, which is located in the focal plane of the second lens.Other
points in the source are focused similarly and form the imaged′a′ of the source.
Notice that each light bundle, such asabc, completely fills the measurement sec-
tion. Therefore every point in the image of the source receives light from every
part of the measurement section.

Now consider light reaching pointg in the measurement section. This light
comes from the sourcead, passes the imaged′a′ of the source, and finally is fo-
cused onto the screen in pointg′. Hence, all light passing pointg completely fills
the imaged′a′ of the source. This is also true for other points (e.g.j) in the mea-
surement section. Only one plane, consisting of pointsg andj can be focused onto
the screen precisely. Depending on the focal depth other parts of the measurement
section will also be sufficiently sharp.

Now we understand, that by cutting off a part of the light in the source-image
plane the light intensity in the entire image, which is focused onto the screen, is
evenly decreased. The only effect of the cut off is the direction in whichthe density
differences are visualized. If a straight knife edge is used to cut off the light only
density differences perpendicular to the edge can be visualized; therefore a circular
cut off (a dot) will be used to visualize density differences in all directionswithin
the measurement plane.

The basic aspects of Schlieren are introduced and it is shown that the Schlieren
technique does not alter the flow, it only uses optical techniques to visualizethe
flow. In the next section two standard techniques will be discussed: PIV and dye
injection, which are both widely used in the literature to visualize wake structures
behind bodies. This is followed by a section on the Schlieren setup and a section
in which some experimental results will be presented and comparisons of those
results with the literature will be made. The last section is left to conclusions.

2.2 Flow visualization methods

Two common techniques used in the field of wake visualization in water are Par-
ticle Image Velocimetry (PIV) and dye injection. PIV uses thin light sheets which
lighten small particles, which are added to the water. These particles have thesame
density as the surrounding water. By following these particles the local flowstruc-
tures can be reconstructed for the flow captured in the light sheet. For thedye
injection method one injects dye just behind the an object. The flow will carry on
this dye and the flow structures will be visualized. Because the spheres and bubbles
are rising freely both techniques have their disadvantages.
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PIV limits the measurement section. Because the light sheets only have a lim-
ited thickness they do not provide a 3D view of the flow field. Furthermore, the
spheres and bubbles rising through water at the Reynolds numbers we are interested
in hardly move straight through the water. This problem was also encountered by
Brücker [1] who used PIV for the visualization of wake structures behind bubbles.
Hence, the chance to capture a sphere or bubble in the light sheet is low and once
captured it will soon continue its path outside the light sheet. Although PIV can
provide quantitative data on velocities around moving spheres or bubbles the time
resolution of images with the actual sphere or bubble captured is low.

Dye injection techniques are commonly used for flow visualization behind
fixed objects. Schouveiler & Provansal [8] obtained beautiful picturesfrom dye
injection experiments to visualize the wake instabilities behind fixed spheres. A
major problem in their experiments was the position where dye is injected. Vortic-
ity generated at the sphere surface leaves the surface at specific locations in vortex
threads. When dye is injected outside these vortex threads there is a chance that
the flow is not entirely visualized. Furthermore, downstream of the spheresec-
ondary vortices may be induced by the vortices leaving the sphere surface, as has
been reported by Johnson & Patel [3] in their numerical study on wake structures
behind spheres. Schouveiler & Provansal discuss this problem and note that they
are not able to visualize these induced wake vortices, because the dye remains in
the vortex threads generated at the sphere surface.

Dye injection has also been used by Magarvey & Bishop for visualization of
both freely moving sphere and bubble wakes [5–7]. Here a second problem ap-
pears. The dye introduces contaminants in the water. For solid spheres thisis not a
problem, because the no slip boundary condition is not affected by contaminants.
For bubbles contaminants can change the bubble boundary condition fromno shear
in clean water to no slip in contaminated water, changing the bubble dynamics sub-
stantially. Not only the amount of vorticity generated at the bubble surface changes,
but also the shape of the bubble is affected by the contaminants. PIV introduces
similar contamination problems, but here one might still think of micro bubble PIV
instead of using micro particles for flow visualization.

The Schlieren technique introduces no contaminants in the fluid and is therefore
in particular interesting for bubble experiments. This was also the main interest
of De Vries [11]. The field of view is not limited to a sheet or places where dye
is injected, it provides flow information in the entire measurement section. In the
next section the Schlieren setup will be introduced.
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Figure 2.3:Schematic top view of the stereoscopic Schlieren setup. Grey areas indicate
the light bundles

2.3 Schlieren setup

2.3.1 The optical components

Figure 2.3 shows the schematic top view of the Schlieren setup. In the center
the water tank (15x15x50cm) is positioned in which the spheres and bubblesare
released. Two light sources are used: either two Light Emitting Diodes (0.12W)
or two halogen lamps (50W). The pinhole (diameter 1.5-3.0 mm) with diffusor
creates a perfect point light source. A thin milk white plastic plate is used as
diffusor. Typical path oscillations of spheres and bubbles moving through water
have a wavelength around 50 mm. To capture an oscillation period properly,the
vertical field of view is 70 mm. Therefore the two light bundles are collimated
by the first two positive lenses (f=1000 mm, ø100 mm) into two non-diverging
light bundles (ø100 mm). Four front surface mirrors (150x150 mm) directthe two
light bundles perpendicular to each other through the water tank. Two positive
lenses (f=1000 mm, ø100 mm) focus the light bundles after passage throughthe
water tank onto the cutoff plate, with a circular cutoff of 1.5-3.0 mm, depending
on the used pinhole. The circular cutoff is simply produced by printing dots on a
transparent plastic sheet. After the cutoff two positive lenses (f=100 mm, ø50 mm),
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a positive lens (f=150 mm, ø50 mm) and four front surface mirrors (40x40mm) are
used to direct the light bundle directly onto the high speed camera which is: either
a Kodak CR2000 with frame rates varying between 500-1000 fr/s and 384x512
pixels or a PCO at 640 fr/s with 1024x1280 pixels, resulting in resolutions of0.21
and 0.078 mm/pixel, respectively. The outer rim of the 100 mm light bundles
might be distorted by abberations; therefore the actual field of view is limited to
70 mm. The system is calibrated using a dotted grid (dot diameter 3 mm, spacing
5 mm) positioned vertically, diagonally in the water tank before and after a series
of experiments. The last three lenses are used to adjust the focus and magnification
factor. In the post-processing a background image is subtracted from all recorded
images to provide a smooth background in each image. Finally, we end up with an
image with two projections of a sphere or bubble with its wake structure.

2.3.2 The thermographic Schlieren method

Density differences in the water created by the motion of spheres and bubbles are
too small to detect. Therefore, a vertical temperature gradient is imposed onthe
quiescent water in the water tank. A heating lamp is positioned on top of the water
tank, creating a constant vertical temperature gradient of 1.0 Kcm−1. An array of
temperature sensors (one every 50 mm) is positioned vertically in the water tank
to constantly measure the water temperature with an accuracy of±0.2 K. Exper-
iments are conducted with temperatures between 25 to 32oC in the measurement
section. The spheres and bubbles drag along water of different density, creating a
local change in density which can be visualized with the Schlieren technique.

The temperature gradient has a negative side effect; it changes the water vis-
cosity (up to 14%). Especially for time resolved reconstruction of forces acting on
these bodies, this viscosity change has to be taken into account. This can easily
be done once the temperature is known from the temperature sensors. Thetem-
perature changes give rise to a change of the surface tension of only 1.5%. Hence,
locally, on the bubble surface, this change can be neglected.

The next section will give the results with respect to flow visualizations behind
spheres and bubbles. These results will be compared with experimental results in
the literature.

2.4 Experimental results

Two examples of flow visualizations will be discussed. One on the wake behind
a bubble, which is compared to work of De Vries [11]. The other on the wake
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(a)

(a) (b)

1cm

t=0.205s

Figure 2.4: Stereoscopic Schlieren images of wake structure behind a spiraling rising
bubble. (a) Image taken from De Vries [11]. (b) Image made with the Schlieren setup with
two halogen lights. Black arrows indicate a weaker wake structure not visible in figure (a).
(c) Same image as in figure (b), but now with path and bubble shapes included. The bubble
shapes are plotted every 10 frames, giving a time interval of0.64 s between the bubble
shapes. The elapsed time after the bubble has entered the field of view is given in the upper
left corner.

structure behind a falling sphere, which will be compared with dye injections ex-
periments by Schouveiler & Provansal [8].

2.4.1 The wake behind a rising bubble

Figure 2.4(a) shows a visualization of the wake behind a spiraling bubble made
by De Vries [11]. He used a stereoscopic Schlieren setup with two 500W Mercury
lights and recorded the experiments with a NAC high speed camera at 500 fr/s. The
well-known double vortex threads are clearly visible. With the Schlieren setup sim-
ilar experiments were carried out at 640 fr/s (figures 2.4(b) and (c))). Comparison
of figures (a) and (b) show an improvement in contrast and sharpness. More de-
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(a) (b)

Figure 2.5: (a) Wake behind a fixed sphere visualized with dye injection. Taken from
[8]. (b) Wake behind a freely falling sphere visualized with the Schlieren setup with two
LED’s.

tails are visible in figure (b), where a third weaker vortex structure becomes visible
indicated by the black arrows. Comparison with figure (c) shows that this distor-
tion is positioned on the bubble path. This observation agrees with an remark by
Ellingsen & Risso [2] on the wake behind rising bubbles. They state that the wake
consists of two vortex threads and a weaker axisymmetric wake straight behind the
bubble. With the setup of De Vries it was not possible to detect this weaker wake
structure. A reason for this might be that his camera provided less contrast or the
mirrors and lenses he used were of lower quality, which can introduce distortions
in the image. More information on the wake behind rising bubbles can be foundin
chapters 7 and 8.

2.4.2 The wake behind a falling sphere

Schouveiler & Provansal [8] visualized wake structures behind fixed spheres, using
dye injection (figure 2.5(a)). The periodic vortex shedding in hairpin vortices is
clearly visible. In the present setup spheres are released that are heavier than water,
resulting in similar wake structures (figure 2.5(b)). The sphere is now allowed to
move freely through the liquid, but still the details of the hairpin vortex shedding
is captured nicely. Although the Schlieren technique averages over the horizontal
depth in the field of view, the vortex structures are so localized that they canbe
captured in much detail. More on the wake structures behind freely rising and
falling solid spheres can be found in [10] and chapter 3.
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2.5 Conclusion

By using an artificial temperature gradient in water the Schlieren technique can be
used for flow visualizations in water at low Mach numbers. The Schlieren setup
of De Vries [11] is improved, resulting in sharper images with more contrast. It
is shown that the use of LED or halogen light sources is still sufficient to properly
visualize the wakes of freely rising or falling solid sphere and rising bubbles in
quiescent water.

The Schlieren technique has some advantages over the established techniques
as PIV and dye injection. It captures flow structures in the entire measurement
section, making it suitable for freely moving objects. Furthermore, it does not
introduce contaminants to the water making it specifically suitable for flow visual-
ization of bubbles rising in purified water.
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Chapter 3

Motion and wake structure of
spherical particles‡

This paper presents results from a flow visualization study of the wake structures
behind solid spheres rising or falling freely in liquids under the action of grav-
ity. These show remarkable differences to the wake structures observed behind
spheres held fixed. The two parameters controlling the rise or fall velocity (i.e., the
Reynolds number) are the density ratio between sphere and liquid and the Galileo
number.

————————————————————————————————

3.1 Introduction

In the past years extensive numerical investigations [3, 7, 8, 15, 17] have estab-
lished how the wake of a sphere heldfixedin a uniform flow undergoes a series of
transitions as the Reynolds numberRe = Ud/ν is increased. HereU is the free
stream velocity,d the diameter of the sphere, andν the kinematic viscosity of the
water. It was found that the wake is axially symmetric up toRe = 212. Above
this value a planar-symmetric wake is found that consists of two steady counter-
rotating threads. AtRe ≈ 270 there is a further transition and the planar-symmetric
flow becomes time-dependent: opposite-signed streamwise vortices then form a
series of loops that resemble hairpin vortices. As the Reynolds number is further
increased, the flow gradually becomes more irregular and finally turbulent.The
Digital Particle Image Velocimetry (DPIV) measurements by Brücker [2] and the

‡C.H.J. Veldhuis, A. Biesheuvel, L. Van Wijngaarden, & D. Lohse,Motion and wake structure of
spherical particles, Nonlinearity18, pp. C1-C8 (2005)
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flow visualization studies by Schouveiler & Provansal [16] have confirmed most of
these numerical results and have further elucidated the sequence of transitions.

For freely moving spheres the Reynolds number is defined by the measured
meanvelocity of rise or fall of the sphereUT and the corresponding ‘Reynolds
number’ becomesReT = 〈UT 〉d/ν. Themeanvelocity is the time averaged ve-
locity of the sphere, not including the acceleration of the sphere from rest. The flow
looses its axial symmetry at a critical Reynolds number which is not significantly
affected by the density ratioρs/ρ [5]: Recr=211.9 forρs/ρ→ ∞ (i.e. sphere held
fixed),Recr = 206.3 for ρs/ρ = 0.5 andRecr = 205.8 for ρs/ρ = 0.0 . This
is in good agreement with, for example, the experimental results on solid spheres
[13], on surface-contaminated gas bubbles [4], and on wake visualizations in ex-
periments with drops of tetrachloride and chlorobenzene falling in water [10–12].
As pointed out by Natarajan & Acrivos [14], these drops must have behaved ef-
fectively as solid spheres due to presence of surface-active impurities, and these
visualizations have therefore often served as a basis of comparison with numerical
studies on fixed spheres.

What happens forfreely falling or rising spheres at higher Reynolds number,
which is more common in multiphase flow applications? How are the wake struc-
tures and transitions observed for the fixed sphere case modified? Is there a (clear)
difference in wake structure between rising and falling spheres? In this paper we
present flow visualizations of the wakes behind freely moving solid spheres at large
Reynolds number (Re = 450 − 4623) for which the density ratioρs/ρ is in the
range 0.50 to 2.63.

3.2 Experimental details

The flow visualizations of the sphere wakes were carried out in a transparent tank
(0.15 x 0.15 x 0.5 m3) filled with decalcified water. Smooth plastic spheres with
diameters between 1.5 mm and 10 mm and densities between 500 kg/m3 and 2781
kg/m3 were released from rest. By means of an optical system consisting of two
LED-lights, pinholes, lenses and mirrors, two perpendicular images of the particle
and its wake were created and recorded at 500 frames/s with a CCD-camera (figure
3.1). Hence, each image consists of two perpendicular views of the same sphere.
The images are taken at a position in the transparent tank where the spheres do
not accelerate anymore. The wake was visualized using the Schlieren technique.
To this end a small vertical temperature gradient in the water was maintained (1
K/cm.). Themeanwater temperature at the measurement section was 302 K, with
corresponding values of the density (〈ρ〉) and viscosity (〈ν〉) of 996 kg/m3 and
0.802·10−6 m2/s, respectively. Hence, the Reynolds number is based on themean
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Figure 3.1:Top view of the Schlieren set-up used to visualize the spherewakes.

viscosity and is defined asReT = 〈UT 〉d/〈ν〉. It turned out to be difficult to keep
a constant temperature gradient. Therefore the error in themeanwater temperature
at the measurement section is about 3 K, leading to a relative error in the viscosity
of 10 %. As opposed to the fixed-sphere problem, the Reynolds number for freely
moving spheres is not an independent parameter. Following Jennyet al. [5] we
choose as independent dimensionless variables the ratioρs/〈ρ〉 of the densities
and the Galileo number

G =
(|(ρs/〈ρ〉 − 1)|g)1/2d3/2

〈ν〉 . (3.1)

Since(|(ρs/〈ρ〉 − 1)|gd)1/2 can be considered as a velocity scale,G plays a similar
dynamical role as the free-stream Reynolds number in the case of fixed sphere.
The parameter values for which we made the flow visualizations are summarized
in Table 1.
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Number d ρs ρs/〈ρ〉 G ReT Figure

falling 1 3.2 1028 1.03 121 205 Figure 3.8
2 4.0 1058 1.06 239 325 Figure 3.8
3 1.5 2781 2.79 304 450 Figure 3.8
4 6.0 1035 1.04 359 546 Figure 3.2
5 6.0 1043 1.05 394 608 Figure 3.2
6 4.0 2629 2.63 1261 1970 Figure 3.8

rising 7 3.2 965 0.97 121 210 Figure 3.6
8 5.0 950 0.95 297 450 Figure 3.3
9 5.0 947 0.95 306 475 Figure 3.3

10 4.0 873 0.88 334 565 Figure 3.6
11 10.0 988 0.99 350 576 Figure 3.4
12 8.0 982 0.99 331 602 Figure 3.6
13 6.0 958 0.96 355 647 Figure 3.2
14 6.0 950 0.95 390 656 Figure 3.2
15 6.4 925 0.93 534 920 Figure 3.6
16 6.4 864 0.87 728 1180 Figure 3.7
17 7.9 925 0.93 732 1350 Figure 3.7
18 6.4 650 0.65 1160 1965 Figure 3.7
19 9.5 500 0.50 2548 4623 Figure 3.7

Table 3.1:Parameter values in our visualizations:d in mm,ρs in kg/m3. G is defined by
equation (3.1) andReT is themeanReynolds number (ReT = 〈UT 〉d/〈ν〉).

3.3 Observations

Figure 3.2 shows stereoscopic images of the wake structure behind falling spheres
with densities approximately 4% (fig. 3.2a) and 5% (fig. 3.2b) higher than that
of the surrounding liquid, and, for comparison, that behind rising spheres with
densities that are approximately 4% (fig. 3.2c) and 5% (fig. 3.2d) lower. In all
these examples the sphere diameter is 6 mm, so that the parameterG is roughly
identical in cases (a) and (c), and in cases (b) and (d). The lighter spheres have
a slightly higher vertical velocity than the heavier spheres, as indicated byReT
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in table 3.1. The wakes of the falling spheres appear to have a more ‘irregular’
structure, and the path followed by these spheres shows much larger deviations
from a straight vertical line. These pictures illustrate that the density ratioρs/〈ρ〉
matters, even at values close to 1.

Figures 3.3a and 3.3b give examples of a phenomenon that we believe to be
characteristic for spheres following a zigzag path, namely that the two counter-
rotating threads in the wake cross at the centerline of the zigzag (indicated by ‘1’
in fig. 3.3a). The presence of these threads of opposite-signed streamwise vorticity
implies that the sphere experiences a lift force. As a consequence of theperiodic
crossing of the threads this force is always directed towards the zigzag center-line
(see the sketch in fig.3.3c). A similar observation was made by De Vrieset al. [18]
on the wake behind zigzagging gas bubbles.

Schouveiler & Provansal [16] remark that for a fixed sphere “the dynamics of
the two opposite-sign streamwise vortices ... presents a striking similarity with
the long-wavelength (or Crow) instability of a pair of counter-rotating parallel vor-
tices” and further “such a vortex pair instability could be responsible of theappear-
ance of unsteadiness in the sphere wake”. Figure 3.3 suggests that the situation is
slightly different for freely moving spheres. Here it appears that closeto the sphere
each of the vortices first develop a ‘kink’ (indicated by ‘2’ in fig. 3.3a), a process
in which the curvature of the vortices presumably plays an important role [1]. As
the kinks develop further downstream of the sphere they come near eachother and
finally combine into what resembles a hairpin vortex (indicated by ‘3’). This se-
quence of events can be seen in the flow visualizations presented in figure3.4, see
also figure 6 of ref. [11].

As the kinks develop and hairpin-like vortices are formed further downstream,
a pattern results. Lunde & Perkins [9] interpreted this pattern as a series of hairpin
vortices of alternating sign, shed periodically by the spheres at the extremes of
the zigzag path. Our visualizations suggest instead that the streamwise vorticity
produced at the surface of the sphere does not change sign; the legsof the like-
signed hairpin vortices cross at the centerline of the zigzag.

Figure 3.2b is an example in which more than one kink develops in a half-
period of the zigzag. We have not yet been able to determine the conditions (in
terms of the parametersρs/〈ρ〉, G, or ReT ) that select the number of kinks that
are formed. What is remarkable is that the development of the kinks and the sub-
sequent formation of the hairpin vortices do not seem to affect the trajectory of the
sphere. This corroborates the opinion that at high Reynolds numbers thedetails of
the vorticity distribution very close to a body basically determine the forces thatit
experiences.

We will now turn to experiments with density ratios more different from one.
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(a) (b) (c) (d)

Figure 3.2:Stereoscopic views of falling and rising spheres and their wakes. The left part
of each frame shows the xz-plane and the right part the yz-plane. In each case the sphere
diameter is 6 mm. The values of the parametersρs/〈ρ〉,G, andReT are, respectively: (a)
1.04, 359, 546; (b) 1.05, 394, 608; (c) 0.96, 355, 647; (d) 0.95, 390, 656.

(a) (b) (c)

Figure 3.3: Stereoscopic views of rising zigzagging spheres and their wakes. The left
part of each frame shows the xz-plane and the right part the yz-plane. The views illustrate
the crossing at the center-line of the zigzag path of the two counter-rotating threads of the
wake (‘1’), the occurrence of kinks (‘2’) at the extremes of the path, and the formation of
hairpin-like vortices (‘3’) as two neighbouring kinks connect. Values of the parametersd,
ρs/〈ρ〉,G andReT are, respectively: (a) 5 mm, 0.95, 297, 450; (b) 5 mm, 0.95, 306, 475.
As shown in (c) the crossing of the vortex threads results in a lift forceL that is always
directed towards the center-line of the zigzag path. D showsthe direction of the drag force
and B the one of the buoyancy.
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Figure 3.4:Sequence of stereoscopic views of a rising sphere and its wake. The left part
of each frame shows the xz-plane and the right part the yz-plane. The views illustrate the
process of formation of a hairpin-like vortex (d = 10 mm, ρs/〈ρ〉 = 0.99, G = 350 and
ReT = 576).

Recently Jennyet al. [6] reported on their numerical work on freely moving
spheres in a Newtonian fluid. They focussed on the frequencies in the wake and
the path of the sphere in the parameter space spanned up by the density ratioand
the Galileo number. Figure 3.5 reproduces their phase diagram. The numbers in
the diagram refer to the numbers of the experiments given in table 3.1. A lot of
our experiments are outside their investigated region and new experiments should
be done in the interesting regions around a Galileo number of 200. Further experi-
ments should focus more on the frequencies in the wake of the sphere and compare
this to the frequencies given by Jennyet al. (see caption of figure 3.5). Further-
more, we must stress that wake visualizations with the Schlieren method demand a
temperature gradient in the water. Hence the density and viscosity of the water are
not constant through the entire flow field and the local Galileo number will notbe
constant. The differences between themeanGalileo number and the local Galileo
number can reach 10 % and must be taken into account when analyzing figure 3.5.
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Figure 3.5:Phase diagram: density ratioρs/〈ρ〉 versus Galileo number. The grey box is
the regime analysed by Jennyet al. [5]. They find in the most left region an axisymmetric
wake. The symbols, directly taken from [5], denote:+ steady and oblique,∗ oblique and
oscillating regime with low frequency (0.045 ≤ f ≤ 0.068), × oblique and oscillating
regime with high frequencies (f = 0.180), O zigzagging periodic regime (0.023 ≤ f ≤
0.035) and2 chaotic regime. The numbers denote the number of our experiment in table
1. Experiments 6 and 19 fall outside the diagram.

A striking difference between our experimental data and the numerical dataof
Jennyet al. is the behavior of falling spheres with a density ratio close to one.
From figures 3.2 and 3.8 it can be seen that these falling spheres can alsofall in a
non-vertical path. This contradicts Jennyet al. who claim that only rising spheres
can go in a zigzagging motion (the circles in the phase diagram figure 3.5).

From our experiments one concludes that for increasing Reynolds number the
wake becomes more irregular (figures 3.6 to 3.8). The two-threaded wakestructure
is also present for higher Reynolds numbers. Is the double threaded wake structure
also present in the case of the highest Reynolds numbers, where the wake structure
has a turbulent structure? If so, do instabilities in the wake cause kinking ofthe
vortex threads which leads to this turbulent wake structure? Further research will
address these questions in order to get a better understanding of the boundary layer
separation from spheres at high Reynolds numbers as shown on this year’s cover.
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(a) (b) (c) (d)

Figure 3.6: Stereoscopic views of rising spheres and their wake structures observed at
several Reynolds numbers (Reynolds number increases from ato d and continues in figure
3.7). The left part of each frame shows the xz-plane and the right part the yz-plane. Values
of the parametersd, ρs/〈ρ〉, G andReT are, respectively: (a) 3.2 mm, 0.97, 121, 210; (b)
4.0 mm, 0.88, 334, 565; (c) 8.0 mm, 0.99, 331, 602; (d) 6.4 mm, 0.93, 534, 920.

(a) (b) (c) (d)

Figure 3.7: Stereoscopic views of rising spheres and their wake structures observed at
several Reynolds numbers (Reynolds number increases from ato d). The left part of each
frame shows the xz-plane and the right part the yz-plane. Values of the parametersd,
ρs/〈ρ〉, G andReT are, respectively: (a) 6.4mm, 0.87, 728, 1180; (b) 7.9 mm, 0.93, 732,
1350; (c) 6.4 mm, 0.65, 1160, 1965; (d) 9.5 mm, 0.50, 2548, 4623.
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(a) (b) (c) (d)

Figure 3.8:Stereoscopic views of falling spheres and their wake structures observed at
several Reynolds numbers (Reynolds number increases from ato d). The left part of each
frame shows the xz-plane and the right part the yz-plane. Values of the parametersd,
ρs/〈ρ〉, G andReT are, respectively: (a) 3.2mm, 1.03, 121, 205; (b) 4.0 mm, 1.06, 239,
325; (c) 1.5 mm, 2.79, 304, 450; (d) 4.0 mm, 2.63, 1261, 1970.

3.4 Conclusions

Flow visualizations of the wakes behind solid spheres moving under the actionof
gravity reveal remarkable differences with the wakes behind spheres held fixed:
the crossing of threads of opposite-signed vorticity, the formation of kinkson these
threads that develop into hairpin vortices. The ratio between the densities ofthe
sphere and that of the surrounding fluid appears to be important. Our experiments
clearly show the difference in path and wake structure between rising andfalling
spheres with the same Galileo number. Furthermore, the double threaded wake
structure seems to be a basic feature, even for large Reynolds numbers.This should
be investigated thoroughly in future research.
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Chapter 4

Freely rising light solid spheres‡

This paper examines the remarkable observations of Karamanev and co-workers
[8–10] on the behavior of spheres rising freely in a Newtonian fluid when the ratio
between the density of the spheres and that of the surrounding fluid is lessthan
0.3. For these light spheres Karamanev & Nikolov have proposed to replace the
standard relation for the drag coefficientCD as a function of the Reynolds number
Re byCD = 0.95 for Re > 130. We have performed detailed experiments with
spheres with density ratio of about 0.02. High-speed imaging is used to recon-
struct three-dimensional trajectories of the rising spheres. From the analysis of the
trajectories the magnitudes of the drag and lift forces exerted by the surrounding
fluid are deduced. It turns out that the Karamanev & Nikolov proposalis not sup-
ported by our experiments. It is argued that the two main contributions to thedrag
force are (i) a viscous drag that may be estimated from the standard drag curve
by evaluating the Reynolds number using the actual value of the velocity, and (ii)
an inertial drag that arises essentially by the same mechanisms that causethe lift-
induced drag familiar from wing theory. Estimates of both contributions, the latter
using visualizations of the wakes of the spheres, give a favorable agreement with
the measured drag forces.

————————————————————————————————

4.1 Introduction

The mean velocity of single solid spheres, rising or falling freely in an infinite fluid,
is of interest in numerous fields, including chemical, mechanical, and environmen-

‡C.H.J. Veldhuis, A. Biesheuvel, & D. Lohse,Freely rising light solid spheres, submitted to J.
Fluid Mech. (2006)
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tal engineering. This velocity may be determined from a balance between the net
gravitational force and the mean drag on the sphere,

1
6πd

3 |ρs − ρ|g = 1
8πd

2 ρU2
T CD, (4.1)

together with a relation for the drag coefficientCD as a function of the Reynolds
numberRe = UTd/ν. Hereρs, d, andUT denotes the density, diameter, and
mean velocity of the sphere, respectively,ρ andν are the density and the kinematic
viscosity of the surrounding fluid, andg is the gravitational acceleration. A simple
and well-known relation for the drag coefficient is that of Turton & Levenspiel [14],

CD =
24(1 + 0.173Re0.657)

Re
+

0.413

1 + 16300Re−1.09
; (4.2)

a discussion of this relation and of others, together with a proposal for analternative

CD =
24

Re
(1 + 0.150Re0.681) +

0.407

1 + 8710Re−1
, (4.3)

is given in Brown & Lawler [2]. Both relations are applicable forRe < 2 × 105.
The data used to construct these relations appear to not have included cases

in which the density ratioρs/ρ is small. Karamanev and co-workers have pointed
out, referring to their experiments with ‘light’ solid spheres rising in water [9,
10] and soap bubbles filled with helium or hydrogen rising in air [8], that these
relations do not apply ifρs/ρ < 0.3. They suggest that forRe > 130 the constant
valueCD = 0.95 is more appropriate. This may be compared with the much
smaller limiting value for high Reynolds numbers following from eqs. (4.2) and
(4.3), namelyCD = 0.413 andCD = 0.407, respectively, that is found for heavy
spheres. (Karamanev & Nikolov mention “Newton’s law” in the title of their 1992
paper which states thatCD ≃ 0.5.)

The conclusion must be [cf. 8] that the dynamics of a heavy and a light sphere
are quite different even though they have the same diameter, the same absolute
value of particle-fluid density difference and are placed in the same fluid, so that the
driving force due to gravity has the same magnitude but only a different direction,
namely, upwards or downwards. The explanation, as put forward first in [10] and
repeated in the two later papers by Karamanev’s group, lies in, as they call,”the
effect of turbulence on the particle”. On page 1845 of their paper Karamanev &
Nikolov state:

”AsRe increases above 130, a wake shedding begins. Periodic pulsations
of the fluid around the sphere are observed; hence the flow streamlinesare not
axisymmetric in this region. This causes an imbalance of the forces applied tothe
sphere in nonvertical direction. The main force (along with that of fluid viscosity)
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opposing these nonvertical forces is that of mechanical inertia of the spherical
particle. The main difference among a light and a heavy particle with the same
driving force ... is that the light particle is less inert because of the smaller density
and therefore smaller mass”.

This explanation is not fully convincing. Firstly, it ignores the inertia of the
fluid surrounding the spheres. This may be thought of as adding a contribution
1
2(ρ/ρs)M U to the inertiaM U of the sphere. HereM is its mass andU its vector
velocity. The fluid inertia is clearly not negligible. It may even be dominant forthe
light spheres considered here. Secondly, the phrase “the effect ofturbulence” bears
with it a notion of randomness that is at odds with the phrase “periodic pulsations
of the fluid around the sphere”. Moreover, all the spheres studied by Karamanev
and colleagues are claimed to have risen along helical paths which suggeststhat the
spheres have experienced a force of constant magnitude and direction, associated
with some underlying structure in the flow.

To examine the questions raised by the work of Karamanev’s group, we have
carried out further experiments on the behavior of light ascending solid spheres.
A brief description of the materials and methods is given in§ 2, followed by a
discussion of the drag relation in§ 3. Recordings of the trajectories of the light
spheres (ρs/ρ ≅ 0.02) have been analyzed to deduce the forces exerted by the
surrounding fluid. The results are presented in§ 4, together with a simple model
for the drag experienced by the spheres. The paper ends with conclusions.

4.2 Materials and methods

For the experiments we used a plexiglass tank with a height of 0.50 m and a cross-
section of 0.15 m× 0.15 m, filled with decarbonated tap water. The temperature
was maintained at a temperature of 21oC, giving a fluid density of 998 kg m−3

and a kinematic viscosity of 0.96·10−6 m2 s−1. A total of 31 experiments with
light solid spheres were conducted. We used expanded-polystyrene (EPS) spheres,
densityρs = 18.5 kg m−3, each with a different diameter in a range between 3.5
and 5.6 mm. In addition, to see any differences in their dynamics, experiments
with ascending and falling spheres with larger density were carried out. These
included spheres of the following materials and properties: polypropylene(ρs =
850 kg m−3, d = 3.97 mm); low-density polyethylene (ρs = 925 kg m−3, d =
6.35 mm andd = 7.94 mm); polystyrene (ρs = 1058 kg m−3, d = 3.97 mm);
polyamide-imide (ρs = 1410 kg m−3, d = 3.18 mm andd = 3.97mm); and glass
(ρs = 2472 kg m−3, d = 2.50 mm;ρs = 2629 kg m−3, d = 4.00 mm).

With the help of mirrors two mutually perpendicular views of the moving
spheres were recorded with a Kodak CR 2000 camera at 500 or 1000 frames per
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second. Standard image analysis techniques then resulted in a three-dimensional
reconstruction of the paths.

In a second series of experiments the water was heated from above. Thisre-
sulted in a small temperature gradient of 1.0 K/cm, which allows to use a Schlieren
optics technique to visualize the wakes of the spheres. This technique was origi-
nally developed to obtain information on the wakes behind gas bubbles [16].De-
tails of the improved set-up used here may be found in Veldhuiset al. [15].

4.3 The drag relation

The data for the dimensionless mean velocityUT , i.e. the Reynolds number

Re =
UTd

ν
, (4.4)

and the drag coefficient as defined by equation (1),

CD = 4
3 |ρs/ρ− 1|gd/U2

T . (4.5)

have been compiled in Figure 4.1. The ‘light’ ascending spheres (ρs/ρ ≅ 0.02)
are distinguished from the ‘heavy’ ascending spheres (0.3 . ρs/ρ < 1.0) and the
data for settling spheres (ρs/ρ > 1.0) by the use of the gray values. The error-
bars represent estimates of the uncertainty in the determination of the physical
parameters in each individual experiment. The solid curve is the relation (4.2)
proposed by Turton & Levenspiel [14] and the dashed line is the relation for light
spheres,CD = 0.95 for Re > 130, proposed by Karamanev & Nikolov [10].

The figure confirms what was observed by Karamanev’s group, namelythat as
the density ratioρs/ρ is sufficiently small, and the Reynolds number is sufficiently
high, there are significant deviations from the standard drag relation. However,
the measured values of the drag coefficient for our light spheres, all for Reynolds
numbers much higher than 130, are lower than the proposed valueCD = 0.95.

Jennyet al. [5] have recently shown by numerical analysis that the critical
Reynolds numberRecr at which the flow around a ‘free’ massless solid sphere
looses axial symmetry is205.8, a value that is only slightly lower than the well-
known critical valueRecr = 211.9 for the flow around a fixed sphere (in other
words, an extremely heavy ‘free’ sphere). This suggests that the Karamanev &
Nikolov’s ‘critical’ Reynolds number of 130 is merely the value of the Reynolds
number for which the Turton-Levenspiel relation givesCD(Re) = 0.95. So it
seems that the Karamanev-Nikolov relation is too simple.

Formally, the problem is characterized by two dimensionless parameters, which,
following Jennyet al. [5], may be chosen as the density ratioρs/ρ and the Galileo
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Figure 4.1: The drag coefficientCD, defined by (4.5), as a function of the Reynolds
numberRe, based on the mean velocity of riseUT . Solid curve: Turton-Levenspiel rela-
tion for heavy spheres (ρs/ρ > 0.3). Dashed line: Karamanev-Nikolov relation for light
spheres (ρs/ρ < 0.3). Experimental data with small error bar close to relation of Turton-
Levenspiel in black:ρs/ρ > 1.0, and light gray:0.3 < ρs/ρ < 1.0. Experimental data
with large error bar (group atCD ≈ 0.85):ρs/ρ = 0.02.

number

G =

√

|ρs/ρ− 1|gd3

ν
. (4.6)

Since(|ρs/ρ− 1|gd)
1

2 can be considered as a velocity scale, the Galileo number
plays a similar dynamical role as the Reynolds number. With definition (4.5) one
can expressCD in terms ofG andRe

CD = 4
3(G/Re)2. (4.7)

The Karamanev-Nikolov relation forCD(Re) should be replaced by afamily of
curves∗ CD(Re, ρs/ρ) parameterized by the density ratioρs/ρ. Each curve coin-
cides with the standard drag curve up to some Reynolds number betweenRe =
205.8 andRe = 211.9, but then bends upwards. The data of Karamanev and co-
workers suggest that for very small density ratios and at sufficiently high Reynolds

∗Rather than takingRe andρs/ρ as parameters, one could also takeRe andG or G andρs/ρ,
employing the relations (4.4) – (4.7) betweenCD, Re, G, andρs/ρ.



36 CHAPTER 4. FREELY RISING LIGHT SOLID SPHERES

Figure 4.2:Sketch of the parametrization of the drag curve with the density ratio. For a
density ratio of infinity (sphere held fixed) the drag curve isthe standard drag curve Turton
& Levenspiel [14]. For density ratios other than infinity thedrag curve leaves the standard
drag curve betweenRe = 205.8 and211.9 [5].

numbers the curves approachCD ⋍ 0.95. However, for larger density ratios the
curves would hardly deviate from the standard drag curve. Figure 4.2 shows a
sketch clarifying this idea.

The construction of the family of curvesCD(Re, ρs/ρ) (by using spheres with
different diameters and densities) will require a considerable effort. The first steps
in a related spirit were taken by Karamanevet al.[9] when they used a collection of
spheres with different diameters, varied the Reynolds number for a sphere of given
diameter by modifying its density, and thus obtained curves ofCD(Re) parame-
terized by the sphere diameter. It may be noted that substantial deviations from the
proposalCD = 0.95 for Re > 130 were also found in these experiments [8].

We note that the large scatter in our data for spheres with a density ratio of
approximately 0.02 raises doubts on the feasibility and the practical value of mea-
suring the full family of curvesCD(Re, ρs/ρ). The reason for this scatter will be
discussed in the next section.

4.4 The motion of the spheres

4.4.1 Trajectories followed by the spheres

The recordings of the motion of the spheres from two perpendicular side-views
were used to construct the curves they traced out in three-dimensional space. Six
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examples are shown in figure 4.3, all for a density ratioρs/ρ ⋍ 0.02 and with
diameters ranging from 3.4 mm to 5.8 mm, so that the Galileo numberG took
values between 615 and 1712. The Reynolds number based on the mean velocity
of rise was found to increase from 889 to 1982; detailed information is given in the
caption of the figure. The character of these trajectories is revealed moreclearly by
a projection on a horizontal plane, i.e. as if the spheres were observed from above.
These views are given in figure 4.4.

In figures 4.3 and 4.4 gray values are used to indicate the tangential velocity
of the spheres, the numbers next to the gray value giving the corresponding value
in m s−1. The velocity appears to have the highest values where the path is most
strongly curved. Ignoring the somewhat erratic path shown in case (f), the varia-
tions in the velocity are largest when the path is close to a perfect zigzag (see the
gray value codes), and least when the path is nearly a pure spiral (spheres following
a perfect helicoidal path do this at a constant velocity).

Karamanev and co-workers mention that in their experiments all the light spheres
ascended along a spiral trajectory. In our experiments, even in repeated trials with
spheres of the same diameter, no preferred type of path was observed.Each dif-
ferent path gave a different value for the mean rise velocity, which is the reason
for the large scatter in our data forCD(Re). This result is a little puzzling. Kara-
manev’s group used a tank with a height of 1.90 m; hence, it is possible that our
tank, with a height of 0.50 m, was too short, and that if the spheres were allowed
to rise over a much longer distance they would eventually end-up following heli-
coidal paths. The true explanation may be more complicated, however. Jenny et
al. [6] have recently shown by numerical simulations that the(G, ρs/ρ) parameter
space may be divided into ‘regimes’, with distinct characteristics of the ‘asymptotic
states’. These asymptotic states refer to non-transient paths, i.e., pathes of spheres
that have been rising for a sufficiently long time. Our experiments correspond to
positions in this parameter space which all lie well within the ‘chaotic regime’.
Chaotic trajectories are characterized by periods with vigorous excursions in ran-
dom directions, interrupted by periods in which the motion is seemingly ‘smooth’
or ‘well-behaved’. Yet, with the exception of case (f) perhaps, the examples shown
in figures 4.3 and 4.4 do not give the impression of being chaotic. It cannot be ruled
out that, by coincidence, these examples represent such periods of calm behavior,
but it is more likely that in this part of the chaotic regime various asymptotic states
co-exist, most of which characterized by smooth paths over considerablelengths
of time. Whatever is the case, using a tube of longer height should not make a
difference, and measurements of the mean velocity of rise and the associated drag
coefficient would appear as poorly reproducible; unless perhaps, averages were
taken over a rather long time.
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Figure 4.3:Measured trajectories of spheres rising in water. The gray values represent the
tangential velocity of the spheres, with the numbers next tothe gray value codes giving the
corresponding value in m s−1. Spatial coordinates have been non-dimensionalized with
the diameter of the spheres. In all casesρs/ρ ⋍ 0.02. (a) d = 3.4 mm,G = 615; (b)
d = 3.9 mm,G = 756; (c) d = 4.3 mm,G = 875; (d) d = 4.8 mm,G = 1032; (e)
d = 5.4 mm,G = 1231; (f) d = 5.7 mm,G = 1335.



4.4. THE MOTION OF THE SPHERES 39

(a) (b)

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

x’

y’

0.251

0.255

0.260

0.264

0.269

0.273

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

x’

y’

0.230

0.243

0.257

0.270

0.284

0.298

(c) (d)

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

x’

y’

0.265

0.275

0.284

0.294

0.304

0.314

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

x’

y’

0.270

0.286

0.301

0.316

0.332

0.347

(e) (f)

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

x’

y’

0.261

0.283

0.305

0.327

0.348

0.370

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

x’

y’

0.302

0.316

0.331

0.345

0.359

0.373

Figure 4.4:Projection of the six measured sphere trajectories of figure4.3 on the XY-
plane. Further details are given in the caption of figure 4.3.
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4.4.2 Drag and lift forces

Determination

To determine the forces that have acted on the spheres as they traced outthe curves
exemplified in figures 4.3 and 4.4, it is helpful to use a Frenet reference frame, i.e.
a moving orthogonal frame with the tangent to the curvet, the normal to the curve
n, and the binormalb as unit vectors. Letr(t) denote the time-dependent position
vector of the center of the sphere with respect to a fixed reference frame and lets(t)
measure the distance traveled along the curve from some arbitrary initial instant.
Then the unit vectors are defined as

t =
dr
ds
, n =

dt
ds
/

∣

∣

∣

∣

dt
ds

∣

∣

∣

∣

, b = t × n, (4.8)

while the variation of these unit vectors along the curve is given by the Frenet-
Serret formulae

dt
ds

= κn,
dn
ds

= −κt + τb,
db
ds

= −τn. (4.9)

Hereκ is the curvature andτ is the torsion of the curve. An instructive, alternative
formulation is obtained on introducing the Darboux vector

d = −τt + κb, (4.10)

by which the Frenet-Serret formulae become

dt
ds

= d × t,
dn
ds

= d × n,
db
ds

= d × b. (4.11)

Hence, the variation of the unit vectors consists of a rotation around the instanta-
neous tangent and binormal at rates−τ andκ, respectively.

Two closely related methods may now be used to determine the forces. Firstly,
with respect to a rectangular coordinate systemOXY Z fixed to the laboratory,
conservation of linear momentum of a body with massM is expressed by the
equation

dI
dt

= {1 − (ρ/ρs)}M g + F, (4.12)

HereI is the virtual momentum of the body, i.e. the sum of the actual momentum
of the body and the impulse of the irrotational fluid motion that would result if the
motion of the body would be generated instantaneously from a state of rest. For a
sphere the virtual momentum takes the simple form

I =
{

1 + 1
2(ρ/ρs)

}

M U, (4.13)
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whereU = (UX , UY , UZ) is the instantaneous velocity of the center of the sphere.
The first term on the right-hand side of (4.12) is the gravitational force. The ‘ex-
traneous’ forceF is what Lighthill [12] calls ‘the vortex-flow force’, i.e. that part
of the force which the fluid exerts on the body due to the presence of ‘additional
vorticity’ in the flow. The precise form of this vortex-flow force does notneed
to concern us here, but it may be noted that expressions in terms of theactual
vorticity distribution in the flow have been given by Kambe [7] and Howe [4];con-
nections with earlier work of J. M. Burgers are discussed in a paper by Biesheuvel
& Hagmeijer [1]. The components of the vortex flow force(FX , FY , FZ) may
be determined from the experimental data on the trajectoryr(t), and may subse-
quently be projected on the Frenet frame to obtain(Ft, Fn, Fb). The drag force on
the sphere isFD = −Ftt and the lift force is given byFL = Fnn + Fbb.

In an alternative method conservation of linear momentum of the body is ex-
pressed directly with respect to the Frenet frame, the motion of which is described
by the translational velocity

U =
ds
dt

t (4.14)

of the origin, and the angular velocity

Ω =
ds
dt

(−τt + κb) (4.15)

about the instantaneous position of its axes. The momentum equation of the body
now reads

(

dI
dt

)

F

+ Ω × I = {1 − (ρ/ρs)}M g + F, (4.16)

where the first term on the left-hand side is the vector formed by the rates ofchange
of the components of the virtual momentum of the body with respect to the Frenet
reference frame. In this case

(

dI
dt

)

F

=
{

1 + 1
2(ρ/ρs)

}

M
d2s

dt2
t. (4.17)

Hence, conservation of linear momentum of the body is described with respect to
a Frenet reference frame by the three equations

{

1 + 1
2(ρ/ρs)

}

M
d2s

dt2
− {1 − (ρ/ρs)}M gt = Ft, (4.18)

{

1 + 1
2(ρ/ρs)

}

M κ

(

ds
dt

)2

− {1 − (ρ/ρs)}M gn = Fn, (4.19)

−{1 − (ρ/ρs)}M gb = Fb. (4.20)
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Figure 4.5:The drag force experienced by the spheres; the unit of the gray value code is
10−5 N. Further details are given in the caption of figure 4.3.
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Figure 4.6:The magnitude of the lift force experienced by the spheres; the unit of the
gray value code is10−5 N. Further details are given in the caption of figure 4.3.
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Figure 4.7:The components of the lift force acting on the spheres. Solidline: component
in the direction of the normal to the curve (Fn). Dashed line: component in the direction
of the binormal to the curve (Fb). Further details as in the caption of figure 4.3.
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Both of the above approaches have been used to determine the drag and lift
forces experienced by the spheres, with virtually identical results. These are pre-
sented in figures 4.5 and 4.6 in views from above of the same sphere trajectories
shown in figures 4.3 and 4.4. Figure 4.5 gives the drag force and figure4.6 the
magnitude(not the direction) of the lift force. In all cases the numbers next to the
gray value code give the corresponding value of the force in10−5 N. In addition,
time traces of the components(Fn, Fb) of the lift force are shown in figure 4.7,
negative values ofFn indicating that this component is directed away from the
center of curvature.

Interpretation

When comparing figures 4.4, 4.5, and 4.6 it is found that points of maximum
tangential velocity do not coincide with the points at which the drag force and
the lift force on the spheres take their largest value, an observation thatwill be
discussed further below.

In figure 4.8 we present all relevant data, including path curvature andtorsion,
in one figure. We do this for two experiments: the spiraling sphere of case (a) and
the zigzagging sphere of case (e). It is clear that for the spiral the motion is nearly
steady. For the zigzag the motion is highly unsteady and the time-shift between
velocity, lift and drag is clearly visible. At the point where the sphere passes the
zigzag centerline the normal and the binormal vectors rotate180o, resulting is a
sudden peak in the torsionτ . The curvatureκ is smallest at the zigzag centerline
indicating that the path is almost straight. The last two figures give estimates for
the vortex angleψ which will be introduced in the next paragraph.

For what concerns the lift forces, the origin of a force transverse to the direc-
tion of motion of the spheres is obviously thegenerationof a vorticity distribution
in the fluid with a hydrodynamic impulse that has a component normal to the direc-
tion of the flow. Visualizations of the wakes of solid spheres by Veldhuiset al. [15]
provided clear evidence of the continuous generation of such vorticity distributions
with a structure which in the near wake consists of two parallel vortex threads, each
with a strong axial component of vorticity (in opposite directions). Zigzagging and
spiralling bubbles also have such a ‘bifid wake’, as shown in de Vrieset al. [16].
Similar vortex structures are found some distance behind the wings of an airplane.
At relatively low Reynolds numbers this bifid wake structure may extend a con-
siderable distance downstream of the solid spheres (or bubbles). The threads may
develop kinks and connect at fairly regularly spaced positions. At higher Reynolds
numbers the wake becomes unstable and even turbulent already close to thebody.
These instabilities may involve a vigorous redistribution of the vorticity already
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Figure 4.8: Data for case (a) (figure (a)) and case (e) (figure (b)), respectively. From
top to bottom: Displacement in X and Y direction (solid and dashed line, respectively),
tangential velocityUt, lift in normal directionFn , lift in binormal directionFb, dragFD,
path curvatureκ, path torsionτ , and vortex plane angleψ. Further details as in the caption
of figure 4.3.
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present in the flow, yet the generation of new vorticity, i.e., the addition of hydro-
dynamic impulse transverse to the direction of motion of the body, varies much
more smoothly, as evidenced by the results of the present experiments.

Another deduction made in de Vrieset al.[16] and Veldhuiset al.[15], namely,
that a pure zigzagging motion of a bubble or a solid sphere is accompanied by
a wake that consists of two vortex threads which merge at the centerline of the
zigzag and subsequently reappear with reversed direction of the vorticitywithin the
threads, needs correction however. In figure 4.7(e) it may be seen how the normal
component of the lift force on a zigzagging sphere suddenly jumps from apositive
value to a negative value, while the magnitude remains the same. The reason for
this behavior is that the normal to the path in the Frenet reference frame is directed
towards the center of curvature. This forces the normal to change direction; the
lift force does not change, it merely changes direction with respect to thenormal
to the curve. In other words, along the zigzag path points of zero curvature do not
correspond to points where the lift force vanishes and changes direction.

De Vrieset al. [16] and Veldhuiset al. [15] assumed that a pure zigzagging
motion of a bubble or a solid sphere is accompanied by a wake that consists oftwo
vortex threads which merge at the centerline of the zigzag. At the instant that the
vortex threads merge no lift is generated, and since the curvature of the path van-
ishes at the centerline of the zigzag, this would imply a violation of equation (4.19),
because the first term on the left hand side and the term on the right hand side are
zero. What really happens is that at the centerline of the zigzag lift is produced to
balance the gravitational force in the direction normal to the zigzag path, whilethe
merging of the threads and the vanishing of the lift occurs some distance away from
the centerline. Equation (4.19) shows that the value of the gravitational force de-
pends on the density ratio. A density ratio close to one implies a small gravitational
force, hence a small lift force. The experiments presented in Veldhuiset al. [15]
used solid spheres with a density close to that of the surrounding fluid, so the error
was difficult to detect. But it becomes clear immediately from figure 4.7(e), and
some hindsight should have been provided by inspection of figure 2 of deVries et
al. [16] of a zigzagging gas bubble.

4.4.3 The nature of the drag

A simple method to estimate the drag forces experienced by the spheres is to use
the Turton-Levenspiel relation (4.2) with the Reynolds number based on thein-
stantaneous velocityU(t) of the spheres; in other words, to write equation (4.18)
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Figure 4.9:Analysis of the drag forces acting on spheres. Solid curves:measured drag
force; dashed curves: viscous drag as given by the Turton-Levenspiel relation with the
Reynolds number based on the instantaneous velocity; dashed-dotted curves: estimates
of the lift induced drag; dotted curves: drag force as a combination of viscous drag and
lift-induced drag. Parameters as given in the caption of figure 4.3.
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Figure 4.10:Because of the continuous generation of new vorticity, which close to the
body consists of two parallel vortex threads, each with a strong axial component of vorticity
but in opposite directions, a sphere experiences a vortex-flow forceFv at right angles to
a plane through the two vortex threads. This force may be decomposed in a lift forceFL

normal to the direction of motion and a lift-induced dragFind opposite to the direction of
motion of the sphere.

as

{

1 + 1
2(ρ/ρs)

}

M
dU
dt

− {1 − (ρ/ρs)}M gt = 1
8πd

2 ρU2CD(Re), (4.21)

whereRe = Ud/ν. This procedure is similar to that suggested by Lighthill in
[12]. It leads to rather unsatisfactory results, as may be seen from figure 4.9, which
shows time-traces of both the actual drag (the solid curve) and the drag calculated
in this way (the dashed curve): the actual drag is not only larger, but also shows
a time-lag with respect to the calculated drag. A possibly remedy, proposed,for
example, by Sarpkaya [13], is to modify the added mass coefficient1

2(ρ/ρs)M on
the grounds that this potential-flow concept needs adjustment to reflect thepres-
ence of vorticity in the flow and/or the action of viscosity. This approach is not
appealing considering the nature of the vortex-flow force, as was explained clearly
by Lighthill [12] and more recently by Leonard & Roshko [11].

A better alternative, we believe, is to view the expression on the right-hand side
of (4.21) as giving a good estimate of the viscous contribution to the vortex-flow
force, while an estimate of the true drag follows from adding a (predominantlyin-
ertial) contribution, which in wing theory is referred to as the ‘lift-induced drag’.
This contribution, as illustrated in figure 4.10, arises essentially because theinstan-
taneous force,Fv say, associated with the generation of a vorticity structure which
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near the body consists of two vortex threads with oppositely directed axial vortic-
ity, as described in§ 4.4.2, is not at right angles with the instantaneous direction of
motion of the sphere. To phrase it differently: The lift-induced drag arisebecause
the instantaneous direction of motion is not parallel to the plane through the two
threads at the place of origin of these threads. Hence, if the angle between the ve-
locity vector and that plane isψ, then the true force that results from the generation
of the vortex threads is directed normal to that plane and has magnitude

(F 2
n + F 2

b )
1

2 / cosψ.

It may be decomposed into components in the directionsn andb with magnitudes
Fn andFb, respectively, which have been determined experimentally, and a further
component in the direction opposite to the tangentt with magnitude

Find = (F 2
n + F 2

b )
1

2 tanψ. (4.22)

We have tried to obtain information on the time-variation of the angleψ from
flow visualizations made with our Schlieren-optics set-up. Letψt be the angle
between the tangent to the trajectory and the horizontal plane, and similarly letψv

be the angle between the ‘vortex-plane’ and the horizontal plane. Hencethe angle
ψ between the velocity vector and the vortex-plane is given by

ψ = ψv − ψt. (4.23)

We now define the angle between the vectora and the horizontalXY -plane asψa,
see figure 4.11. The angles with the horizontal in projections on theXZ-plane and
Y Z-plane are calledψaX andψaY , respectively. From elementary geometry one
then obtains

1

tan2 ψa
=

1

tan2 ψaX
+

1

tan2 ψaY
. (4.24)

Two examples of Schlieren visualizations of the wakes of rising solid spheres
are shown in figure 4.12, in which we have indicated the anglesψtX ,ψvX ,ψtY , and
ψvY ; the values ofρs/ρ andG are based on the measured temperature at the center
of the field-of-view. Obviously, this procedure can only yield rough estimates of
ψvX andψvY , because the turbulence in the wake makes the pictures ‘blurry’ and
the wakes are highly ‘curved’. Furthermore, the angleψ is best calculated when the
sphere crosses the centerline of the zigzag, where the path is (almost) straight. Now
the vorticity structure is also straight, enabling a good prediction of the angleψ.
For a typical Schlieren experiment this results in two or three measurement points
per experiments for the angleψ, approximately one every 0.1 s. On using equa-
tions (4.23) and (4.24) we obtainψ = 26.1o±1 for the case shown in figure 4.12(a)
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Figure 4.11:The angle between the vectora and the horizontalXY -plane is calledψa.
The angles with the horizontal in projections on theXZ-plane andY Z-plane areψaX and
ψaY , respectively. Eq. (4.24) gives a relation between these three angles.

andψ = 37.5o ± 1 for that in figure 4.12(b). From a whole range of visualizations
for values ofG between 600 and 1800 it appears that along the sphere trajectories
the angleψ varies roughly between25o to 38o. Given the uncertainty in determin-
ing the variation ofψ with time, and in order to have some definite value, we chose
a fixed angleψ = 30o and used this to evaluate expression (4.22). This procedure
gives the dashed-dotted curves shown in figure 4.9 (which in this case is just 1

3

√
3

times the magnitude of the lift force). Finally, adding the lift-induced contribution
to the viscous contribution as estimated from the expression on the right-handside
of (4.21), resulted in an estimate of the drag experienced by the spheres that is pre-
sented in figure 4.9 as the dotted curves. The agreement with the measured drag
(the solid curves) turns out to be excellent. While this supports our view of the
mechanisms that govern the generation of flow-induced forces on the spheres, it
also suggests that any variations in the viscous contribution to the drag associated
with the building-up of the vorticity field by diffusion and convection are negligible
at high Reynolds numbers. This contrast the situation at low Reynolds numbers,
where they are important.

Note that we used the angleψ extracted from Schlieren experiments as input
for non-Schlieren experiments. Hence, the actual angleψ remains unknown. If
we had evaluated the Schlieren experiments as detailed as the non-Schlierenex-
periments, larger uncertainties would have emerged, as the image analysis cannot
clearly distinguish between the sphere and its wake. Therefore the sphere position
is not properly detected, resulting in errors in path, curvature, velocity,and there-
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(a) (b)

Figure 4.12: Schlieren visualizations of the wake of rising spheres, viewed from two
orthogonal directions. The solid curved line indicates thepath followed by the sphere
during the time intervalt between the moment of entering the field-of-view and the moment
that the picture was taken. The anglesψtX andψtY are the angles between the direction
of motion and the horizontal as observed in projections on theXZ-plane andY Z-plane;
similarly, ψvX andψvY are the estimated angles between the horizontal and the plane
containing the two vortex threads.(a) ρs/ρ ⋍ 0.02, d = 3.7 mm,G ⋍ 775, t = 0.125 s;
(b) ρs/ρ ⋍ 0.02, d = 5.8 mm,G ⋍ 1712, t = 0.110 s. With timet the time passed from
the moment the sphere path is plotted.

fore the forces of the sphere. However, the previous discussion showed that the use
of Schlieren data for non-Schlieren experiments is justified and provides excellent
agreement between theory and experiment.

4.5 Conclusions

In this paper we examined the proposal, given originally by Karamanev & Nikolov [10],
to replace for spheres with a density ratioρs/ρ < 0.3 the standard drag relation by
CD(Re) = 0.95 for Re > 130. Our experiments with spheres withρs/ρ ≅ 0.02
showed a rather poor agreement with this proposal, consistent with our view that it
is more appropriate to replace the standard drag curve by a series of curves para-
meterized by the value ofρs/ρ, each of these curves starting off from the standard
drag curve at a higher Reynolds number than 130, namely betweenRe = 205.8
andRe = 211.9. It was argued however, that for any individual case a substantial
difference may be found between the measured mean velocity and that calculated
from a balance between the net gravitational force and the mean drag as given by
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these relations. The reason is that for Reynolds numbers beyond about250 light
spheres do not rise along any preferred path.

By image analysis of stereoscopic recordings of the motion of the spheres
three-dimensional reconstructions of the trajectories were made, which onfurther
analysis yielded the drag and lift forces experienced by the spheres. It was pro-
posed that the drag force consists of (i) a viscous contribution that may beestimated
from the standard drag curve by evaluating the Reynolds number using theactual
value of the velocity, and (ii) an inertial contribution that arises essentially bythe
same mechanisms that cause the lift-induced drag on airplane wings. Estimates of
both contributions, the latter using visualizations of the wakes of the spheres, give
a favorable agreement with the measurements.

There is obviously a connection of our study on freely rising spheres withwork
done on vortex-induced vibrations, as already exemplified by references to the pa-
pers of Lighthill [12], Leonard & Roshko [11] and Sarpkaya [13]. This connection
is most intimate, perhaps, with studies of the motion of elastically mounted and
tethered spheres, an example of which is given by Govardhan & Williamson [3].
Their description of the origin of the lift force on the spheres is essentially simi-
lar to what has been put forward by our group in the context of freely rising gas
bubbles and solid spheres. It would be interesting to try to combine their beautiful
visualizations and DPIV measurements of the sphere wakes with the simple model
of the drag force given in§ 4.4.3. Given the great detail with which the vorticity
distributions was characterized, it may even be possible to estimate the vortex-flow
forces experienced by the spheres on using the expressions derived by Kambe [7]
and Howe [4].
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Chapter 5

Phase diagram for sphere
motion‡

This paper presents the results of an experimental investigation aimed at verify-
ing some of the interesting conclusions of the numerical study by Jenny, Dušek
& Bouchet [3] concerning the instability and the transition of the motion of solid
spheres falling or ascending freely in a Newtonian fluid. The phenomenon isgov-
erned by two dimensionsless parameters: the Galileo numberG, and the ratio of
the density of the spheres to that of the surrounding fluidρs/ρ. Jenny, Dǔsek &
Bouchet showed that the(G, ρs/ρ) parameter space may be divided into regions
with distinct features of the trajectories followed eventually by the spheres after
their release from rest. The characteristics of these ‘regimes of motion’ as de-
scribed by Jenny, Dǔsek & Bouchet, agree well with what was observed in our
experiments. However, flow visualizations of the wakes of the spheres using a
Schlieren optics technique, raise doubts about another conclusion of Jenny, Dǔsek
& Bouchet, namely the absence of a bifid wake structure.

————————————————————————————————

5.1 Introduction

Detailed numerical investigations (Kim & Pearlstein [7]; Natarajan & Acrivos[13];
Johnson & Patel [4]; Ghidersa & Dušek [1]; Lee [8]; Tomboulides & Orszag [17])
have revealed the various wake structures that may be found behind a solid sphere
held fixed in a uniform flow, and have unraveled the mechanisms by which these

‡C.H.J. Veldhuis & A. Biesheuvel,An experimental study of the regimes of motion of spheres
falling or ascending freely in a Newtonian fluid, submitted to Int. J. Multiphase Flow (2006)
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flows loose stability. Experiments by Ormières & Provansal [14] and Schouveiler
& Provansal [16] have confirmed many of the conclusions of these numerical stud-
ies. A related flow problem of practical importance, namely that of instability and
transition of the flow around solid spheres falling or ascending freely in aninfi-
nite fluid, has recently been analyzed by Jenny, Bouchet & Dušek [2] and Jenny,
Dušek & Bouchet [3] (referred to as JDB in what follows). Although§ 3.2 of
JBD presents some ‘preliminary experimental observations’ of the motion of the
spheres, and although numerous flow visualization studies of the wakes offalling
spheres have already been published – the beautiful photographs of Magarvey &
Bishop [9, 10] and Magarvey & MacLatchy [11] should be noted especially –, it
seems that an experimental verification of the results found by Dušek’s group has
not yet been given. Our paper aims at providing such a verification.

The problem is characterized by two nondimensional parameters, which may
chosen asρs/ρ, the ratio of the density of the solid sphere,ρs, to that of the sur-
rounding fluid,ρ, and the Galileo numberG, defined as

G =

√

|ρs/ρ− 1|gd3

ν
. (5.1)

Hered denotes the sphere diameter,ν is the kinematic viscosity of the fluid, andg
is the gravitational acceleration. The two parametersG andρs/ρ together define
a parameter space. The numerical simulations of JDB show that the spheres, after
having been released from rest, reach different ‘asymptotic states’: their trajecto-
ries eventually will have special characteristics that are typical of certainregions of
the (G, ρs/ρ) parameter space. A diagram indicating these ‘regimes’ is figure 29
of JDB, which is reproduced here in figure 5.1. JDB’s description of their charac-
teristics may be summarized as follows:

For values ofG less than about 156 the spheres fall or ascend along a straight,
vertical path. The axisymmetric flow around the spheres becomes unstable at a
value ofG which weakly depends on the value of the density ratioρs/ρ. For ex-
ample, Jennyet al. (2003) give critical values ofG = 155.8 for massless spheres,
G = 156.1 for ρs/ρ = 0.5, andG = 159.3 for spheres that are inhibited to move
in a horizontal plane (which effectively means that the mass of the spheresis infi-
nite). At higher values than this first critical value ofG, i.e. for parameter values
pertaining to the regime indicated by + in figure 5.1, the spheres move at a constant
speed along a straight, oblique path; in others words, in a direction not perpendic-
ular to the horizontal plane. The flow around the spheres is steady, but now only
planar-symmetric.

At a second critical value ofG, which depends much more strongly on the value
of ρs/ρ, a waviness of the wakes behind the spheres sets in. For parameter values
within the regions indicated in figure 5.1 by× and∗, the spheres follow a path that
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Figure 5.1: The different regimes of sphere trajectories in(G, ρs/ρ)-parameter space,
as identified by Jenny, Dušek & Bouchet [3]: +, steady oblique;∗, oblique with periodic
fluctuations of low frequency;×, oblique with periodic fluctuations of high frequency;◦,
zigzag;�, chaotic, with the domain of chaotic and zigzag motion delimited by the dotted
line. (Reprinted from theJournal of Fluid Mechanics)

in the mean is straight and oblique, but involves small periodic excursions in afixed
plane through this oblique path. It appears that two dimensionless frequenciesf ,
defined as

f =
f ′

√

|ρs/ρ− 1|g/d
, (5.2)

with f ′ the frequency in Hz, may be associated with these excursions: a ‘high’
frequencyf ≈ 0.180 in regime× and a ‘low’ frequency0.045 ≤ f ≤ 0.068 in
regime∗; the borderline between the two regimes is the density ratioρs/ρ ≈ 2.5.

Actually, for ‘light’ spheres (ρs/ρ < 0.5, say) this ‘oblique and oscillating
regime’ of rise∗ only pertains to a narrow range of Galileo numbers: above a third
critical value ofG of approximately 175 the spheres ascend along a zigzag path,
with a characteristic fundamental frequency0.023 ≤ f ≤ 0.035, while a strong
third harmonic is also present. This ‘zigzagging periodic regime’ is indicated in
figure 5.1 by◦. The figure also shows that forρs/ρ > 0.5 the oblique and oscil-
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lating regime extends to larger values ofG and, interestingly, that the zigzagging
periodic motion isnot observed for spheres with densities larger than that of the
surrounding fluid (ρs/ρ > 1.0).

Finally, in the regime indicated by� the sphere trajectories are ‘chaotic’. For
spheres with a density higher than that of the surrounding fluid this means that su-
perposed on the seemingly smooth trajectories are small random excursions, with-
out any apparent dominant frequency. This may be contrasted with the chaotic
motion of spheres with a density less than that of the fluid, which is characterized
by high velocity fluctuations for which the Fourier transforms of the horizontal
components show a definite peak atf ≈ 0.14. In addition, the wandering motion
may be interrupted by periods in which the spheres are zigzagging regularly at a
much lower frequency; JDB give an example (see their figure 25) in whichthis
‘low’ frequencyf ≈ 0.038, i.e. comparable to the characteristic frequencies of the
zigzagging periodic regime (◦). JDB also point at the possibility that forρs/ρ < 1
there is a special subdomain of the chaotic regime: in the region delimited by the
dotted line in figure 5.1 special initial conditions (cf. JDB’s figures 26, 27 and 28)
may result also in a periodic zigzagging motion; but now the characteristic fre-
quency is the above-mentioned ‘high’ valuef ≈ 0.14.

After a brief description in§ 2 of the materials and methods used, we present
in § 3 an overview of the sphere trajectories that were observed in the experiments.
The values of the dimensionless parametersρs/ρ andG cover most of the regimes
described above. A puzzling result of the numerical simulations by JDB is the
absence of a ‘bifid wake’ behind the spheres. Flow visualization studies by Maga-
rvey & Bishop [9, 10], Magarvey & MacLatchy [11] and, much more recently, by
our group (Veldhuiset al. [18]), have revealed the presence of two counter-rotating
vortices. Some new flow visualizations, which corroborate what was found in the
earlier studies, are presented in§ 4. The paper ends with conclusions.

5.2 Materials and methods

The experimental set-up used to study the trajectories of the spheres is a perspex
tube with height 220 cm and diameter 16 cm. At the bottom or the top (depending
on whether the spheres would rise or fall) it is equipped with a special device to
introduce the spheres. The measurement section (at the opposite end) is enclosed
by a rectangular tank filled with tap water, to match the refraction index of the
perspex and to minimize optical distortions. A halogen lamp behind a diffusive
plate illuminates the measure section. By the use of mirrors a stereoscopic view
from the sides is obtained, which is recorded with a Kodak CR 2000 camera at
a frame rate of 500 or 1000 per second; image processing then yields the three-
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Material d ρs % ν ρs/ρ G

A Glass 2.47 2470 31.0 2.54 2.31±0.05 176±11
B HDPE 6.35 630 51.0 6.34 0.56±0.03 166±15
C Glass 2.47 2470 28.0 2.27 2.32±0.05 198±12
D Torlon 3.96 1410 28.0 2.27 1.32±0.04 195±13
E Glass 2.47 2470 26.0 2.13 2.33±0.05 212±13
F HDPE 6.35 630 47.5 5.28 0.56±0.03 198±17
G HDPE 6.35 630 45.5 4.80 0.57±0.03 218±19

Table 5.1:Values of the physical parameters and the dimensionless numbers in the se-
ries of experiments A to G, where the capitals A to G correspond to the rectangular re-
gions within parameter space indicated in figure 5.2. Given are the material of the spheres
(HDPE: high-density polyethylene; Torlon: polyamide-imide), their diameterd in mm and
densityρs in kg m−3, the mass percentage of glycerine (%) of the mixtures and their kine-
matic viscosityν in 10−6 m2 s−1, the density ratioρs/ρ and the Galileo numberG as
defined in (5.1). The last two columns include estimates of the uncertainty of the given
values.

dimensional positions of the spheres. To ensure a good resolution the fieldof view
is limited to 15 cm× 15 cm× 27 cm.

The density ratioρs/ρ and the Galileo numberG, as defined in equation (5.1)
were varied by using different fluids, tap water and mixtures of water andglyc-
erine, and by using different spheres. The temperature was set at 20oC. The
selection of results presented below is based on experiments glass spheres (d =
2.47 ± 0.03 mm, ρs = 2470 ± 30 kg m−3), polyamide-imide spheres (Torlon:
d = 3.96 ± 0.01 mm,ρs = 1410 ± 20 kg m−3), and with hollow spheres of high-
density poly-ethylene (HDPE:d = 6.35± 0.01 mm,ρs = 920± 20 kg m−3). The
mass fraction of glycerine of the fluid ranged between 28 to 51 %. The viscosity
of the fluids was calculated from this mass fraction using theHandbook of Chem-
istry and Physics(Weast [20]). This results in a possible error in the viscosity of
less than 3.5 %. Further, a Haake RS 600 rheometer was used to verify these cal-
culations. Detailed information on the values of the physical parameters and the
dimensionless numbersρs/ρ andG is given in table 1; here the labels A to G refer
to the rectangular regions of parameter space indicated in figure 5.2.
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Figure 5.2:The investigated regions of the(G, ρs/ρ) parameter space. Information on
the values of the physical parameters and the dimensionlessnumbers is given in table 1.
The size of the rectangular regions corresponds to the estimated uncertainty in the values
of G andρs/ρ. The lines separating the parameter space are taken from figure 5.1.

In a second experiment the flow behind the spheres was visualized using a
Schlieren optics technique, which was originally developed to study the wakes of
gas bubbles (de Vries, Biesheuvel & van Wijngaarden [19]). Details ofthe set-
up used in the present study are given in Veldhuiset al. [18], a paper which also
includes a large number of Schlieren images of sphere wakes for density ratios
close to unity (0.93 < ρs/ρ < 1.05) and Galileo numbers between 306 and 732,
i.e. well within the chaotic regime. The Schlieren technique relies on creating a
slight temperature gradient in the fluid, of about 1.0 K cm−1, by heating the fluid
from above. This, of course, limits the size of the tank: here we used a rectangular
glass container of 15 cm× 15 cm× 50 cm. The field of view is set by the diameters
of the lenses just behind and in front of the tank, in this case 10 cm. The conditions
were chosen such that in the center of the field of view the fluid properties have
the values given in table 1. The visualizations of the wakes behind the spheres
discussed in§ 4 concern the regions of parameter space labelled B, C and F in
figure 5.2; however, the spheres may not yet have reached the ‘asympotic state’.
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5.3 The motion of the spheres

We will now discuss the various paths along which the spheres were observed to
rise up or fall down the long perspex tube. It is convenient to do this usingviews
from above, which were reconstructed from the stereoscopic recordings made from
the sides. For each of the cases A to G a series of paths will be shown (the left
column of figures 5.3, 5.4, and 5.6). The recorded paths have been shifted so that
they all start at the same position in the figure; each path has been given a number
to simplify the discussion. Next to the views from above a ‘three-dimensional
reconstruction’ of one of the paths is shown (the right column of figures 5.3, 5.4,
and 5.6), thus providing an example that represents well the regime identifiedby
JDB.

5.3.1 Steady and oblique regime: Cases A and B

JDB find that for Galileo numbers a little higher than the critical value for the
primary instability, the spheres move steadily along a straight non-vertical path.
Although there a few exceptions, the majority of the paths of the falling glass
spheres shown in figure 5.3(a), case A, is consistent with the predictions of JDB.
The slight curvature of the paths found in experiments 2, 4, and 9 may be due to a
slight non-sphericity of the particles. Presumably, the sudden change ofdirection
in experiment 8 indicates that the sphere has hit the wall of the tank.

Most of the paths shown in figure 5.3(c), case B, are also slightly curved, but
not to the extent that JDB’s prediction must be considered as falsified. Inthese ex-
periments hollow high-density poly-amide (HDPA) spheres were used, anda den-
sity distribution that is not perfectly spherically symmetric may be the reason that
the paths are not straight. We have no explanation for the somewhat wrigglypaths
found in experiments 4 and 7. It may be noted that there is a resemblance with the
paths found in the experiments of case F, see figure 5.6(c). Hollow HDPA spheres
were also used in that case, but with slightly larger diameter, which suggeststhat
we may have made a mistake during the experiments.

The existence of the steady oblique regime, which even includes solid spheres
of negligible mass, may be a little surprising for those who are more familiar with
the behavior of gas bubbles. The primary instability of the flow around gas bubbles
eventually leads to a zigzagging or spiralling motion (something that was known
already to Leonardo da Vinci; cf. Prosperetti [15]). That this is not what is observed
for massless solid spheres suggests that the very different behavior of gas bubbles
is due to their ability to deform easily.
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Figure 5.3:Left column: Top views of observed particle trajectories inthe steady and
oblique regime: (a) case A, (c) case B. Right column: 3D reconstruction of one of the
paths shown on the left; (b) experiment 12, (d) experiment 8. Distances have been nondi-
mensionalized by the diameters of the spheres.

5.3.2 Oblique and oscillating regime: Cases C and D

In the experiments of case C the same glass spheres were used as in the experi-
ments of case A, but the fluid properties where adjusted - this changes the value
of G, but hardly affects the value ofρs/ρ - so that the parameter values would
correspond to what JDB specify as the periodic oblique regime. In fact, the value
2.32 of the density ratioρs/ρ in case C is just below 2.5, which JBD estimate
as the value which divides the periodic oblique regime into two parts: one with
high-frequency velocity fluctuations (ρs/ρ > 2.5) and another with low-frequency
velocity fluctuations (ρs/ρ < 2.5). The experiments of case D should correspond
to the low-frequency periodic oblique regime and were conducted with polyamide-
imide (Torlon) spheres.
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Figure 5.4:Left column: Top views of observed particle trajectories inthe oblique and
oscillating regime: (a) case C, (c) case D. Right column: 3D reconstruction of one of
the paths shown on the left; (b) experiment 8, (d) experiment 2. Distances have been
nondimensionalized by the diameters of the spheres.

For what concerns case C, most of trajectories shown in figure 5.4(a) are
oblique and deviate little from a straight line. Exceptions are the experiments 9
to 12, in which the strong curvature of the path is presumably due to interactions
with the wall. While a Fourier analysis of the components of the horizontal ve-
locity fluctuations in cases A and B does not yield anything significant, a similar
analysis of case C shows that dominant non-dimensional frequenciesf of approx-
imately 0.06 and 0.19 (see figure 5.5(a)) are clearly present. The first frequency
is within the range of0.045 ≤ f ≤ 0.068 mentioned by JDB as typical of the
low-frequency oblique and oscillating regime, while the second frequencyseems
to agree with the valuef ≈ 0.18, which according to JDB characterizes the high-
frequency oblique and oscillating regime. Hence, it appears that there is aregion of
parameter space in which there is smooth transition between the two regions that
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Figure 5.5:Fourier transforms of one of the horizontal velocity components in the oblique
and oscillating regime. (a) case C, experiment 3; (b) case D, experiment 1. The frequency
has been nondimensionalized as indicated by equation (5.2).

constitute the oblique and oscillating regime identified by JDB.
The trajectories observed for case D, with the polyamide-imide spheres, are

presented in figure 5.4(c). Ignoring the minor deviations, these are indeed perfectly
straight oblique paths. Fourier analysis of one of the horizontal velocity compo-
nents in experiment 1 reveals (see figure 5.5(b)) a dominant non-dimensional fre-
quencyf of approximately 0.245. This value is well outside the range of0.045 ≤
f ≤ 0.068 mentioned by JDB. Peaks at frequenciesf ≈ 0.25 are also found in the
horizontal velocity spectra of all the other experiments of case D. In some of the
spectra broad, but much smaller, peaks may be observed at frequencies between
0.06 and 0.14 (as in figure 5.5(b)), yet it must be concluded that the resemblance
with what was found by JDB is rather poor.

5.3.3 Zigzagging periodic and chaotic regime: Cases E, F and G

In the experiments of case E the same glass spheres were used as in those of cases A
and C. By adjusting the fluid properties a region of parameter space was selected
which according to JDB should lie at the border, but just within, the chaotic regime.
Some of the observed trajectories are shown in figure 5.6(a). They differ from the
trajectories of case C (the oblique and oscillating regime) shown in figure 5.4(a)
by having much stronger variations in curvature. There is a clear resemblance with
the trajectory shown in figure 20 of JDB, calculated forρs/ρ = 5 andG = 250;
however, because of the limited field of view it was not possible to detect the slow
helicoidal motion visible in that figure. Fourier analysis of the components of
the projection of the velocity vector did not reveal the presence of any dominant
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Figure 5.6:Left column: Top views of observed particle trajectories inthe zigzagging
periodic regime and the chaotic regime: (a) case E, (c) case F, (e) case G. Right column: 3D
reconstruction of one of the paths shown on the left; (b) experiment 12, (d) experiment 7, (f)
experiment 11. Distances have been nondimensionalized by the diameters of the spheres.
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Figure 5.7:Fourier transforms of one of the horizontal velocity components. (a) zigzag-
ging periodic regime: case F, experiment 9; (b) chaotic regime: case G, experiment 3. The
frequency has been nondimensionalized as indicated by equation (5.2)

frequencies, and qualifying this regime of parameter space as chaotic seems to be
justified.

The trajectories found in the experiments of cases F and G are shown in fig-
ures 5.6(c) and 5.6(e). According to JDB’s classification case F belongs to the
zigzagging periodic regime and case G to the chaotic regime. Yet, the trajectories
have a similar appearance: in each of these cases a zigzagging is found occasion-
ally, but more often the spheres follow a jagged path. These experiments were
conducted with hollow HDPE spheres, and, as was argued above, the density dis-
tributions of many of these may not have been perfectly spherically symmetric.It
seems that the observations of case F agree with the discussion in§ 10 of JDB,
where it is shown that slight inhomogeneities are sufficient to destroy the zigzag-
ging periodic regime (cf. also their figure 31). Hence, in both cases F andG
the motion of the spheres must be considered as chaotic, the zigzag paths being
instances of the special character of the chaotic regime for ascending spheres as
identified by JDB (see their figures 25 and 27); namely, that the erratic motionmay
be interrupted by short periods in which the spheres move along a zigzag.

Further support for these conclusions may be found by looking at the Fourier
transform of a horizontal velocity component of a zigzagging particle, such as
shown in figure 5.7(a) for experiment 9 of case F, and in figure 5.7(b) for experi-
ment 3 of case G. Both spectra show a large peak at a dimensionless frequencyf of
about 0.052. We have no explanation for the appearance of this frequency, but it is
certainly much higher than the fundamental frequency of the zigzagging periodic
regime, which according to JDB should lie within the range0.023 ≤ f ≤ 0.035.
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1cm

t=0.331s

Figure 5.8:Stereoscopic Schlieren image of the wake of a rising sphere in the steady and
oblique regime (case B). The picture was takent = 0.331 seconds after the sphere had
entered completely the field of view.

It may be noted that also a further characteristic of the zigzagging periodicregime,
i.e. a strong third harmonic, is absent from figure 5.7(a). Instead, broad peaks
are observed at dimensionless frequencies of approximately 0.12 in figure 5.7(a)
and 0.14 in figure 5.7(b), values that agree very well with the value off = 0.14
mentioned by JDB as characteristic of the ‘zigzagging spots’ within the chaotic
trajectories.

To conclude this section, it may be noted that, on comparing figure 5.6(a) with
figures 5.6(c) and 5.6(e), the behavior of the light, ascending, HDPE spheres dif-
fers considerably from that of the heavy, falling, glass spheres. Thissupports the
conclusions of Karamanev & Nikolov [6] and Karamanev, Chavarie & Mayer [5];
namely, that the motion of ‘light’ spheres (which they associate with a density ra-
tio ρs/ρ < 0.3) is truly different from that of heavy spheres; the upshot being
that the standard drag correlationCD(Re), with the Reynolds numberRe and the
drag coefficientCD based on the mean vertical velocity, does not apply for these
light spheres. The motion of rising light solid spheres at high values ofG has been
studied in chapter 4.

5.4 The wakes of the spheres

It was already mentioned that for values ofG slightly higher than that for which the
axially symmetric flow around a gas bubble rising in clean water becomes unstable,
the bubble will follow a zigzag or helicoidal path. The wake of such a bubble
consists of two counter-rotating vortices, as was established by the numerical work
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Figure 5.9:(a) Stereoscopic Schlieren image of the wake of a falling sphere in the oblique
and oscillating regime (case C). The dash-dotted line indicates the path followed by the
sphere after it completely entered the field of viewt = 0.297 seconds earlier; this is also
the starting point of the line.). (b) Enlarged view of a detail of (a).

of Mougin & Magnaudet [12] and the flow visualizations of de Vrieset al. [19].
This behavior is quite different, as shown first by JDB and confirmed by our study,
from that of solid spheres, which in the analogous situation rise or fall along a
straight non-vertical path. JDB also find that the wakes behind these particles do
not have a bifid structure. Figure 5.8 shows a stereoscopic Schlieren image of the
wake of a falling sphere in the steady and oblique regime (case B). In our opinion,
this picture proves that the wake consists of two counter-rotating vorticies,just like
the wakes of zigzagging or spiralling bubbles and the wakes of solid spheres held
fixed in a uniform flow (cf. Schouveiler & Provansal [16]); this contradicts the
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Figure 5.10:Schlieren images of the wake of a rising sphere in the ‘destroyed’ zigzagging
periodic regime (case F), showing how the double-threaded wake evolves into a hairpin-
like vortex structure. The pictures were takent seconds after the sphere had entered com-
pletely the field of view. (a) t = 0.081 s, (b) t = 0.181 s, (c) t = 0.341 s.
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Figure 5.11: Stereoscopic Schlieren image of the wake of a rising sphere in the ‘de-
stroyed’ zigzagging periodic regime (case F). The picture was takent = 0.301 seconds
after the sphere had entered completely the field of view. Note the different character of
the wake as compared to that shown in figure 5.10.

findings of JDB.
A stereoscopic Schlieren image of the wake of a falling solid sphere in the

oblique and oscillating regime (case C) is shown in figure 5.9(a). Here the path
followed by the sphere between the moment that it entered completely the field of
view and the moment that the picture was taken is visualized by the dash-dotted
yellow line. The wake does not coincide with the trajectory of the sphere, which
indicates that the oscillatory wake structure has evolved by a redistribution of the
vorticity generated by the sphere. The enlarged view of the wake just behind the
sphere, figure 5.9(b), supports the description of this process, as given earlier by
Veldhuiset al. ([18]; see also their figure 3): the two counter-rotating vortices kink,
through which they locally get close together (see the region just below the center
of figure 5.9(b)), and subsequently the two threads of vorticity bend and connect
(see the structure near the top of the figure). The smooth sphere trajectory of fig-
ure 5.9(a) also suggests that this process of redistribution of wake vorticity hardly
affects the ‘overall’ motion of the spheres. Yet, it may lead to small fluctuations
in the velocity. This becomes evident by associating a ‘frequency’ with the pattern
observed in figure 5.9(a). This frequency, made dimensionless in the manner of
equation (5.2), is estimated as 0.19; a value which indeed coincides with one ofthe
peaks in the Fourier spectrum of a horizontal velocity component, such asshown
in figure 5.5(a).

A further illustration of the evolution of the unstable bifid wake is given in
the Schlieren visualizations presented in figure 5.10. This concerns a rising solid
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sphere in what JDB classify as the zigzagging periodic regime (case F), but which
here turned out to be chaotic, as a consequence of a lack of sphericalsymmetry in
the density distribution of the hollow HDPE spheres that were used. That thewake
of rising spheres in this ‘destroyed’ zigzagging periodic regime may also have a
somewhat different structure is exemplified in figure 5.11. Figures 5.10 and 5.11
confirm what was mentioned earlier; namely, that the overall motion of the spheres
is not affected significantly by the redistribution of the vorticity in the flow. Here
again, a dimensionless frequency may be associated with the wake patterns:its
value is estimated as between 0.11 and 0.15 for the wake shown in figure 5.10,
and between 0.15 and 0.19 for that in figure 5.11. For the case of figure 5.10 this
values agrees well with the broad peak observed in the velocity spectrum shown
in figure 5.7(a). Unfortunately, the limited field of view did not allow us to look
for other details of the flow, which might explain the high peak atf ≈ 0.05 in
figure 5.7(a).

5.5 Conclusions

To the best of our knowledge, the work of Dušek and colleagues (JDB) is the first to
give a detailed analysis of the instabilities and transitions in the motion of spheres
moving freely under the action of gravity. Our experiments do not give informa-
tion on the mechanisms involved in these instabilities and transitions. However,
our observations agree very well with JDB’s description of the main features of
the motion of the spheres and how these may be associated with various regimes:
regions of the(G, ρs/ρ) parameter space for which the motion of the spheres have
quite distinct characteristics. Discrepancies found in the experiments with hollow
high-density poly-ethylene spheres (case B) may presumably be attributedto a lack
of spherical symmetry in the density distribution of these spheres. This is supported
by the fact that on using these spheres no evidence could be found forthe existence
of JDB’s zigzagging periodic regime. JDB show that a slight mismatch in the po-
sitions of the center of volume and the center of mass of the spheres destroys this
regime; the motion of the spheres is then best described as chaotic. This agrees
with what was observed in our case F.

We also found some differences with JDB’s description of the ‘details’ of the
motion of the spheres. These concern the values given by JDB of the dominant
frequencies that may be observed in the spectra of one of the horizontalvelocity
components. In particular, our experiments suggest that the oblique and oscillat-
ing regime, divided by JDB into two sub-regimes, one with a ‘low’ characteristic
frequency and one with a ‘high’ characteristic frequency, must includea third sub-
regime (case C) in which both of these characteristic frequencies are present. Fur-
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thermore, the observed velocity spectra of ascending spheres in the chaotic regime
(cases F and G) show broad peaks at a dimensionless frequency that agrees fairly
well with the characteristic frequency mentioned by JDB; yet, both these spectra
also have a distinct peak at a much lower frequency (f ≈ 0.05), a phenomenon not
found by JDB.

Finally, our flow visualizations disprove a remarkable assertion of JDB, namely,
the absence of a bifid wake behind the spheres. In all our pictures the wake consists,
entirely or in part, of two counter-rotating vortices.
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Chapter 6

General aspects of a single bubble
rising in water

This chapter presents the general features of a single bubble (1 ≤ deq ≤ 6 mm),
rising in purified water. The smallest bubbles (deq ≤ 1.72 mm) are oblate ellipsoids
rising rectilinearly, whereas larger bubbles (1.72 ≤ deq ≤ 2.80 mm) are oblate
ellipsoids in spiraling motion. For even larger bubbles (deq > 2.80 mm) shape
oscillations set in and the path of the bubbles is strongly influenced by the shape
oscillations. Right at the onset of shape oscillations (deq ≈ 2.80 mm) the bubble is
forced into a zigzagging motion.

Comparison of the rise velocity and shape of the bubble with earlier research
shows that the water used for the experiments is indeed pure, not contaminated
with surfactants.

This chapter serves as a general introduction to single bubble motion. Thenext
two chapters provide more details on bubbles without and with shape oscillations,
respectively.

————————————————————————————————

6.1 Introduction

The behavior of rising bubbles has been a research topic for many years. Haberman
& Morton [6] and later Hartunian & Sears [7] have conducted numerous experi-
ments in several liquids with different bubble sizes. A nice overview of bubble
motion from small to large volume equivalent diameter (Deq) is given by Lindt [9]
(Table 6.1).

75
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Deq Re description

Deq <0.08 Re <70 sphere, rectilinear path,
CD as for solid spheres

0.08< Deq <0.12 70< Re <400 sphere, rectilinear path,
CD less than solid spheres

0.12< Deq <0.15 400< Re <500 oblate spheroid,
rectilinear motion

0.15< Deq <0.48 500< Re <1100 oblate spheroid,
helical motion

0.48< Deq <0.70 1100< Re <1600 irregular oblate spheroid,
almost rectilinear motion

0.70< Deq <1.66 1600< Re <5000 transition from oblate spheroid to
spherical cap, almost rectilinear motion

Deq >1.66 Re >5000 spherical cap, rectilinear motion

Table 6.1:Overview of bubble motion.Deq given in cm. Taken from Lindt [9].

Figure 6.1: The terminal rise velocity as function of the bubble diameter and Ëotvös
number in water at 20oC. Taken from Cliftet al. [3].
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Lindt extracted these data from a report by Rosenberg (1950). Herethe Reynolds
number is defined by

Re =
UvDeq

ν
, (6.1)

with Uv the vertical rise velocity of the bubble andν the kinematic viscosity of the
water. Clift et al. [3] provide an informative figure on the terminal rise velocity
as function of the bubble diameter and Eötvös number (Figure 6.1). The Eötvös
number is defined by

Eo =
∆ρD2

eqg

σ
, (6.2)

with ∆ρ the density difference between liquid and gas,g the gravitational acceler-
ation, andσ the surface tension coefficient of the liquid-gas interface. Compared
to the data of Lindt, their figure is less detailed with respect to the different regimes
of bubble motion and shape, but it provides more information on the effect of sur-
factants in the water.

Small bubbles are spherical and rise rectilinearly. Thereafter, for increasing
diameter, bubbles first become oblate spheroids, followed by a bifurcationto a he-
lical path. When shape oscillations are triggered the bubble returns to an almost
rectilinear motion. Finally the bubble has the form of a spherical cap rising rec-
tilinearly. We are interested in the intermediate regime in which the bubble path
deviates from rectilinear. What causes this deviation and what is the influence of
shape oscillations? This research focuses on bubbles with an equivalent diameter
between 1 and 6 millimeter. Hence, we start with fixed shaped bubbles in rectilin-
ear motion and end with bubbles performing shape oscillations.

The dynamics of the bubble is strongly influenced by the properties of the fluid
(density, viscosity, and surface tension). For smaller, spherical bubbles viscosity is
most important in determining the rise velocity of the bubble whereas, in the case
of ellipsoidal bubbles, surface tension is dominant. In the regime with ellipsoidal
bubbles the Weber number is an important parameter providing the ratio between
fluid inertia and surface tension

We =
ρU2

vDeq

σ
, (6.3)

with ρ the density of the fluid. Moore [14, 15] calculated the Weber number as a
function of the deformation of a bubble at large, but finite, Reynolds number. He
assumed potential flow around an oblate ellipsoidal bubble rising rectilinearly. In
his calculation he satisfied the balance between surface tension and pressure forces
only at the stagnation point and at the intersection of the bubble surface withthe
horizontal midplane. More recently Benjamin [2] improved this calculation using
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a virial method satisfying the boundary condition on the entire bubble surface. In
section 6.3 the experimental results are compared with the relations of Moore and
Benjamin.

Bubble size and Reynolds number of the flow bifurcations are influenced by the
purity of the water. Bel Fdhila & Duineveld [1] showed that surface active com-
ponents attach to the bubble surface and migrate to the rear of the bubble. Above
a certain critical concentration of surface active components the rise velocity de-
creases rapidly; for concentrations of the surface active componentswell above
the critical concentration the rise velocity is equal to that of a solid sphere. Two
mechanisms cause this decrease in rise velocity: firstly, at low surface-active con-
centration the front of the bubble is uncontaminated and the rear is coveredwith
surface-active components, locally causing a drop in surface tension.The differ-
ence in surface tension between front and rear creates a Marangoniforce which op-
poses the surface flow, and increases the drag coefficient [17]. Secondly, at higher
concentrations of the surface-active agents the entire bubble is covered changing
the boundary condition on the entire surface from no-shear to no-slip, increasing
the drag on the bubble. We want to have reproducible results, study path instabil-
ities, the effect of shape oscillations, and compare our results with potentialflow
theory. Therefore the bubble surface must satisfy a no-shear boundary condition
and the use of purified water is necessary.

There is much discussion how to determine the purity of the water. Duineveld
[5] studied the effect of surfactants in the water. Comparison with earlier research
shows that in purified water the bubbles reach the highest rise velocity (see also fig-
ure 6.1) and therefore flow bifurcations occur at higher Reynolds numbers. Hence,
comparison of these aspects in our experiments with those of Duineveld givea
good indication of the purity of the water.

In section 6.2 the materials and methods are discussed, followed by the experi-
mental results in section 6.3; here the relation between bubble path, shape and
velocity will be discussed. Section 6.4 is left to conclusions.

6.2 Materials and methods

The experiments were conducted in a glass tank with a height of 0.50 m and a
cross-section of 0.15 m× 0.15 m, filled with purified water with an electrical re-
sistance of 18.2 MΩcm and less than 10 ppb organic particles. For comparison,
some experiments have been performed in tap water. The temperature was main-
tained at 20oC, giving a fluid density of 998 kg m−3 and a kinematic viscosity
of 0.9810−6 m2 s−1. With an optical setup of lenses and mirrors two mutually
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perpendicular views of the rising bubbles were recorded at 500 or 1000 frames per
second. More information on the experimental setup can be found in chapter 2.

After the bubble is produced (more details on the bubble generator can be found
in a paper by Ohl [16]), it is pushed through a capillary to measure its volume.
Several capillaries were used depending on the desired bubble size, resulting in
a maximum volume error of 5% for the smallest bubbles dropping to 1% for the
largest bubbles.

All bubbles are recorded 40 cm after release. This is well within the steady
state regime of bubble motion, because the experiments showed no overall increase
of the rise velocity as is the case in the transient state. Furthermore, experiments
with solid spheres, see [8] and also chapter 5, show that the transient state is long
(larger than 100 sphere diameters) for small Reynolds number. But in the case of
high Reynolds number the spheres reach their final stage of motion alreadyafter a
few sphere diameters. This can easily be understood, because the boundary layer
thicknessδ depends on the transient timet (δ ∼

√
νt) and the Reynolds number

(δ ∼ D/
√
Re). Therefore, the transient time for the boundary layer to fully de-

velop depends on the ratio of the diameter and the velocity (t ∼ D/U ). So, the
transient state is shorter for higher velocities.

Image analysis techniques result in a three-dimensional reconstruction ofpath,
shape, and orientation of the bubble. This provides us with information on bub-
ble velocity and aspect ratio, which is the ratio between the major and minor axis
of an oblate ellipsoidal bubble. In chapter 7 the image analysis techniques willbe
discussed in more detail.

6.3 Experimental results

This section is divided in two parts: one on the path and the shape of the bubble and
one on its rise velocity. In the figures the onset of path instability and shape insta-
bility are indicated with thin vertical or horizontal lines. To test the reproducibility
of the experiments two data sets with purified water are presented marked with
symbols ’+’ and ’o’; in case of tap water the symbol ’·’ is used.

6.3.1 Bubble path and shape

Figure 6.2(a) shows the dependance of the aspect ratio of the path (χpath) on the
bubble diameter. The aspect ratio of the path is extracted from the top view on
the bubble path. A pure spiral has an aspect ratio of one, whereas a zigzag has
an infinite aspect ratio; for rectilinearly rising bubbles no path aspect ratiocan be
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Figure 6.2:(a) χpath versusDeq; (b) δpath/Deq versusDeq. ’+ ’and ’o’ represent two
different data sets. The thin vertical lines indicate the onset of path instability (left line)
and shape instability (right line).

defined.
After the first path bifurcation from rectilinear to helical atDeq ≈ 1.72 mm

the aspect ratio remains one. The aspect ratio of the path increases rapidly when
the shape oscillations set in atDeq ≈ 2.80 mm; the shape oscillations trigger a
zigzagging motion. Recall that the bubbles are all in their final stage of motion.
The literature (e.g. [12]) only mentions spiraling motion as final stage. Hence, the
experiments show that shape oscillations drastically change this typical behavior.
For larger bubble sizes the zigzagging motion disappears and a large scatter in the
aspect ratio remains. We are now in the regime where we have so-called ’rocking’
bubbles [10, 11]. More details on the effect of shape oscillations on the bubble
motion will be discussed in chapter 8. The onset of shape oscillations for experi-
ments in purified water and tap water is lower than the 4.8 mm found by Lindt [9].
Either Lindt performed experiments in even more contaminated water or he did
not resolve the shape oscillations from his experimental observations. The latter
hypothesis is the most plausible, because the shape oscillations (∼50 Hz) can only
be captured using high speed imaging, not available to him at that time.

Figure 6.2(b) shows the maximal horizontal displacement of the bubble,δpath,
as it can be observed in the reconstructed top view (XY -view), nondimensional-
ized with the equivalent diameter. For a bubble performing path oscillations this
displacement will be measured within one period of the path oscillation; it is de-
fined as

δpath =

√

[max(X) − min(X)]2 + [max(Y ) − min(Y )]2, (6.4)
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Figure 6.3:δpath/Deq versusDeq. Experiments in purified water (o and +) and tap water
(·).

with X andY the horizontal displacements inX- andY -direction, respectively.
The nondimensionalized horizontal displacement is maximal for spiraling bubbles,
right after the path instability. Further increasing the bubble size decreases the
relative amplitude. When shape oscillations set in the amplitude remains almost
constant; finally the motion will be almost rectilinear as was reported by Lindt [9].
It is well-known that surfactants increase the drag. Related to this the horizontal
displacement of bubbles rising in purified water and in tap water are shown in
figure 6.3. Bubbles in tap water have a larger horizontal displacement thanbubbles
rising in purified water. Energy is dissipated in horizontal motion, which links with
a lower vertical rise velocity and therefore higher drag coefficient of bubbles rising
in tap water as will become clear from figure 6.5. For larger bubble diametersthese
differences disappear. These observations agree with the findings ofClift et al. (see
figure 6.1).

We saw that the bubble trajectory strongly depends on the bubble diameter; this
is also the case for the bubble aspect ratio. Figure 6.4(a) shows an almost linear
increase of the aspect ratio of the bubble (χ) with increasing equivalent diameter
for rectilinearly rising bubbles. This agrees well with the data from Duineveld
[4] and potential flow theory of Moore [15] for rectilinearly rising bubbles. The
path instability sets in at an aspect ratio of 1.7, which is slightly smaller than 1.9
observed by Duineveld. At the onset of path instability our experimental results
start to deviate from Moore’s theory. The explanation is the lower rise velocity of
non-rectilinearly rising bubbles which results in aspect ratios lower than predicted
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Figure 6.4: χ versusDeq (a) purified water, ’+’ and ’o’ represent two different data
sets; (b) tap water. o—o taken from Duineveld [4], – Moore’s theory. The thin vertical
lines indicate the onset of path instability (left line) andshape instability (right line). The
’groups’ in figure (b) are due to replacement of the capillary tube in the bubble generator
for a larger tube (at 2.5 and 4 mm).

by Moore’s theory. When shape oscillations set in at an aspect ratio of 2.2, the
scatter of the aspect ratio increases.

The effect of surfactants can be seen in figure 6.4(b): for bubbles rising in tap
water the aspect ratio is decreased in the entire range of bubble diameters,because
of a lower surface tension and rise velocity of the bubble. Shape oscillations start
at a slightly larger diameter (Deq ≈ 3.0 mm). This is due to the lower aspect ratio;
shape oscillations only appear above a certain critical aspect ratio and bubble diam-
eter. The largest bubbles are so large that the bubble surface is already unstable at
small aspect ratios. When shape oscillations set in there is a large scatter in the as-
pect ratio; some bubbles seem to reach the aspect ratio of uncontaminated bubbles.
It is assumed that shape oscillations shed the surfactants, leaving an uncontami-
nated surface. Obviously, shape oscillations are not always strong enough to fully
’clean’ the surface. The sudden drop in aspect ratio at a diameter of approximately
2.5 mm is due to a change in the experimental apparatus to generate the bubbles.
Small bubbles are generated using a small capillary tube, whereas large bubbles,
starting at approximately 2.5 mm diameter, are generated using a large capillary.
The shape oscillations on the bubble are stronger in the case of a small capillary.
Therefore a bubble pushed through a small capillary is probably cleanerthan a
bubble pushed through a large capillary; this results in a higher aspect ratio for the
smaller bubbles. This phenomenon can again be seen at an equivalent diameter of
4 mm. Here the capillary has, again, been replaced by a larger capillary. Notice
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Figure 6.5: (a) Uv versusDeq; (b) CD versusRe. ’+ ’and ’o’ represent two different
data sets. Three lines are taken from [13]: – water at35oC, - - water at20oC, · − ·
water-glycerine mixture (10% by mass) at20oC. o—o taken from Duineveld [4]. The thin
straight lines indicate the onset of path instability (left, respectively lower, line) and shape
instability (right, respectively upper, line).

that for the experiments in purified water these replacements of the capillary tubes
cannot be detected from the aspect ratio. Wu & Gharib [19] also reported this dif-
ference in bubble behavior depending on the way the bubble was generated. They
assumed they performed experiments in purified water and therefore concluded
that for one bubble size two behaviors would be possible: slow sphericalbubbles
and fast ellipsoidal bubbles. The present experiments suggest that they probably
performed experiments in contaminated water; which was also suggested by Yang,
Prosperetti & Takagi [20].

6.3.2 Bubble velocity

Figure 6.5(a) shows the dependance of the vertical rise velocity on the diameter
of the bubble. The data of Duineveld [4] and Maxworthy [13] are included. The
highest rise velocity (Uv ≈ 0.356 m s−1) is reached just before path instability
sets in and agrees well with the maximum velocity (Uv ≈ 0.362 m s−1) measured
by Duineveld. The path instability sets in at an equivalent diameter of 1.72 mm,
this lies between the values of 1.62 mm determined by de Vries [18] and 1.81 mm
by Duineveld [4], who both used purified water. The difference compared to the
data of de Vries is due to his use of a temperature gradient to visualize the wake
structures behind the bubbles. This leads to an averaged temperature of 28oC, well
above our 20oC. The data of Maxworthy show that increasing the temperature de-
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creases the ’critical’ diameter at which the path instability occurs, and increases the
vertical rise velocity. The temperature used in our experiments (20oC) is equal to
that at which Duineveld’s experiments were done. We reach almost the sameverti-
cal rise velocity, but at a smaller bubble diameter. One might think this is causedby
the data analysis method which detects the bubble contour in subsequent images.
But previous comparison with data of Duineveld showed that a similar relation be-
tween bubble diameter and aspect ratio is detected. Vibrations in the system might
trigger the path instability; therefore the effect of a water tank damped with and
without air dampers has been investigated to see if there was any change in the
position of the path instability. Although no change was detected our experiments
might still possess more perturbations than the experiments of Duineveld. His ex-
periments were conducted in a lab with a permanent concrete floor, whereas our
lab is situated in a temporary building where low frequency vibrations are hardly
damped. A second explanation is the possibility of a large scale recirculation in
our water tank. After every experiment we waited 3 minutes for the water to come
to rest, this might not be sufficient. Further research should investigate thismore
thoroughly.

Clift et al. showed that the drag experienced by the bubble is smallest in pure
water, which is also reflected by Maxworthy’s experiments (see figure 6.5(a)); this
can be related to the larger horizontal motion of the bubble in tap water (see fig-
ure 6.3). Now consider the drag coefficient

CD =
4

3

Deqg

U2
v

, (6.5)

with g the gravitational acceleration of 9.81 m s−2. Figure 6.5(b) shows the de-
pendence of the drag coefficient on the Reynolds number. For rectilinearly rising
bubbles our data overlaps the data of Maxworthy and Duineveld. The minima in
the drag coefficient are equal. But for our spiraling bubbles the drag islarger than
in Duineveld’s experiments because his bubbles still rise rectilinearly up to a bub-
ble diameter of 1.82 mm.

Finally, we focus on the relation between the rise velocity and the shape of thebub-
ble. Figure 6.6 shows the dependence of the Weber number on the aspectratio. The
relations of Moore [15] and Benjamin [2] are also plotted. At small aspect ratios
there is a rather nice agreement between experiment and theory, but forincreasing
aspect ratio the deviation from theory becomes larger. Duineveld [4] ascribes this
to overestimation of the deformation by theory. For identical equivalent diameter
the aspect ratio found in the theory is larger than the aspect ratio found in exper-
iments (see also figure 6.4); a larger aspect ratio increases the drag experienced
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Figure 6.6:Weber number versus aspect ratioχ. ’+ ’and ’o’ represent two different data
sets. o—o Duineveld’s results [4], – Benjamin’s relation [2], - - Moore’s relation [15]. The
thin vertical lines indicate the onset of path instability (left line) and shape instability (right
line).

by the bubble (see also appendix B in chapter 7). In the experiments of Duin-
eveld path instabilities set in at aspect ratios above 1.9 and Weber numbers larger
than 3.3. Hence, all of Duineveld’s data shown here are in the rectilinearlyrising
regime. Our experiments show a path instability at slightly lower values for the
aspect ratio and Weber number, 1.7 and 2.7, respectively. As suggested before,
this might be due to vibrations in our experimental setup or the presence of a large
scale recirculation. After the onset of path instability, but before shape oscillations
set in, the experimental and theoretical data are in better agreement. This is re-
markable because the difference between the aspect ratio of the bubble intheory
and in experiments is even larger for non-rectilinear rising bubbles (see figure 6.4).
Hence, it seems that the overestimation of the deformation by theory, as suggested
by Duineveld [4], is not the only reason for the difference between theory and ex-
periment. A better explanation can be given in terms of the minimum radius of
curvature of the bubble. For an oblate ellipsoid the radius of curvature is calculated
in appendix C of chapter 7. The minimum radius of curvature (Rmin) for an oblate
ellipsoid is

Rmin = Deq
χ1/3

χ2 + 1
, (6.6)

and is located at the equator of the ellipsoid. The theory of Moore providesa
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sent two different data sets. The solid line is the relation of Moore. The thin vertical lines
indicate the onset of path instability (left line) and shapeinstability (right line).

relation between the equivalent diameter of the bubble and its aspect ratio (see
also figure 6.4). Combining this relation with the relation for the minimum radius
of curvature gives the solid line in figure 6.7. At the equator of the bubble the
velocity at its surface reaches a maximum, resulting in a low pressure, hencea high
pressure drop across the surface. This results in a small radius of curvature which is
therefore seen to be related to the rise velocity of the bubble. Figure 6.7 shows that
Moore’s theory predicts bubble shapes which are in good agreement withrespect
to the minimum radius of curvature just before the onset of shape oscillations. That
is the reason why in figure 6.6 at these aspect ratios the theoretical dimensionless
velocity (the Weber number) is in such good agreement with experiments. When
shape oscillations set in, the agreement is less because Moore assumed a bubble
of fixed shape. So, with respect to the rise velocity, agreement in the radius of
curvature at the equator of the bubble is more important than agreement in the
aspect ratio of the bubble.

6.4 Conclusion

This chapter dealt with general aspects of single bubbles rising in purifiedwater.
The experiments clearly show the influence of shape oscillations on the motion of
the bubble; the bubble path changes from a stable spiral into a pure zigzagat the
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bubble size where shape oscillations set in. The relative horizontal displacement of
the bubble is maximal just before path instabilities set in. This results in the largest
rise velocities, and therefore lowest drag, for these bubbles. These rise velocities
are as high as has been measured by Duineveld. The critical diameter for the onset
of path instabilities in our experiments is slightly lower than Duineveld finds. This
might be caused by vibrations in our experimental setup which trigger these insta-
bilities or large scale recirculations in the water tank. This smaller critical diameter
gives rise to some deviation with respect to the results of Duineveld for the critical
Weber numbers and aspect ratio for path and shape instabilities. But the agree-
ments in rise velocity and drag experienced by the bubble justify the statement the
experiments are conducted in purified water. Finally, it is shown that the minimum
radius of curvature of the bubble shape is a better measure of the rise velocity of
the bubble than the bubble aspect ratio.

In the next two chapters the behavior of rising bubbles will be examined in
more detail. We saw the important influence of shape oscillations on the bubble
dynamics. Therefore chapter 7 focusses on the bubbles without shapeoscillations
and chapter 8 on the bubbles with shape oscillations.
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Chapter 7

Motion of oblate ellipsoidal
bubbles‡

The previous chapter introduced the general aspects of single bubble motion. In
this chapter we focus on oblate ellipsoidal bubbles that rise without shape oscil-
lations. Ellingsen & Risso [5] also studied bubble behavior in this regime. Their
results will be compared with the results of our experiments.

A new mathematical method to calculate the bubble path, orientation and
shape from the experimental data is introduced. This is followed by the calcu-
lation of the forces and torques acting on the bubbles. A link will be made with
the vorticity structure behind the bubble and models for drag and lift experienced
by the bubbles will be introduced. It is shown that the measured drag consists of
a contribution related to viscous drag and a contribution induced instantaneously
by the lift force. It seems that variations in the viscous contribution to the drag
associated with the ‘building-up’ of the vorticity field by diffusion and convection,
important at low Reynolds numbers, are negligible at high Reynolds numbers.

————————————————————————————————

7.1 Introduction

Ellingsen & Risso [5] discuss the features of the flow around an ellipsoidalbubble
of fixed shape rising in a quiescent liquid. They focus on a single bubble of 2.5 mm
diameter, rising along a (flattened) helicoidal path. Several checks weremade to
ensure that their water was pure. The terminal rise velocity of the bubble is agood

‡adapted from: C.H.J. Veldhuis, A. Biesheuvel, & L. van Wijngaarden,Motion of oblate ellip-
soidal bubbles, to be submitted to J. Fluid Mech. (2007)

89



90 CHAPTER 7. MOTION OF OBLATE ELLIPSOIDAL BUBBLES

indication for the purity of the water. Duineveld [4] performed experiments in
purified water; the maximum rise velocities he found are the largest reportedin the
literature. Ellingsen & Risso’s results for the terminal rise velocity of the bubble
were in good agreement with the results of Duineveld.

In their paper they introduce some important research questions:
”...Do the observed trajectories correspond to transitory stage or to a stablefi-
nal motion? Are shape oscillations present or not? What is the exact definition
of zigzag and helical paths?...”They answer these questions for one bubble size;
obviously answering these questions for a broad range of bubble diameters would
give much more understanding, as will be shown in this chapter.

Ellingsen & Risso performed experiments with two high-speed cameras pro-
viding them with two side views of the bubble. They assumed the bubble to be
an oblate ellipsoid of constant shape with its minor axis aligned with its trajectory,
which has been confirmed by De Vries [12]. With respect to this constant shape
and orientation the authors state:
”...owing to the constant relative orientation and shape of the bubble, the wake
instability is the only possible cause of the path oscillations observed here. The
prediction of the bubble motion thus requires taking into account the interaction
between the bubble and the unsteady wake.”Later on the orientation of the wake
behind the bubble will be discussed in more detail, providing a way to predict the
forces acting of the bubble based on the wake structure behind it.

After an initial acceleration Ellingsen & Risso observe that the bubble starts
oscillating in an almost plane zigzag. The plane zigzag progressively transforms
into a flattened helix, which is the final stable trajectory. They explain this transi-
tion with two harmonic modes involved in the path oscillations. These modes have
the same frequency but areπ/2 out of phase. The primary mode was saturated,
leading to a plane zigzag. The secondary mode was still increasing, leadingto a
transition from a plane zigzag to a helical trajectory. When the amplitude of the
secondary mode is increasing the vertical velocity will decrease and finallybecome
constant for a pure spiral.

Besides the path of the bubble Ellingsen & Risso also studied the liquid velocity
induced by the bubble motion. They found two regions in the flow: potential flow
in front of and next to the bubble and a long wake behind it. The flow in the wake
consists of a quasi-steady part that spreads around the bubble trajectory and a part
consisting of vortices that are generated at the bubble rear. These vortices are de-
scribed by Lunde & Perkins [7] and Brücker [3]. About the wake vortices Ellingsen
& Risso say:”They have a strong influence on the flow just behind the bubble and
on the hydrodynamic force that acts on it. They are the origin of the bubble path
oscillations that cause the increase of the drag coefficient. ... Nevertheless, they
do not induce large liquid velocities and their influence on the intermediate- and
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far-wake intensity is small. The velocity decay behind the bubble is predicted well
by the axisymmetric wake around a rectilinear rising bubble provided the local
orientation of the wake is taken parallel to the bubble trajectory.”

In this chapter part of the work done by Ellingsen & Risso will be verified. Fur-
thermore, by calculating the actual forces and torques acting on the bubbles this
research will be extended in order to have a better understanding of bubble motion.

In section 7.2 a method to reconstruct the path, orientation and shape of the
bubble will be introduced; equations will be derived from which the orientation and
shape of the bubble easily follow. Section 7.3 discusses the experimental results.
Here the forces and torques acting on the bubble expressed in a Frenetreference
frame will be calculated. Furthermore several features of the wake behind the
bubble will be discussed. In section 7.4 this wake will be linked to the forces
acting on the bubble and a model for lift and drag will be introduced. Section7.5
is left to conclusions. At the end of this chapter three appendices are included.
Appendix A discusses the derivation of the general equations of motion to calculate
forces and torques. This is follow by appendix B on the irrotational flow around
oblate spheroids. We end with appendix C on the calculation of the surface of an
oblate spheroid.

7.2 Reconstruction of path, orientation and shape

The reconstruction of the bubble path, orientation, and shape have beendone by
several researchers with slightly different methods. Ellingsen & Risso [5] recon-
struct the bubble shape and orientation from two 2D projections of the bubble.
They assume an oblate ellipsoid with its minor axis along the path of the bubble.
The major axes are directly taken from the projections. They can only extract the
minor axis of the bubble at those instances when the bubble velocity is verticalin
one side view. The minor axis can then be extracted from the other side view.As-
suming a bubble of constant volume with an oblate ellipsoidal shape they show they
can correctly calculate the projected minor axis in the side views [5, fig.3]. The
disadvantage of this method is, that they cannot continuously calculate the actual
bubble shape; it is necessary for the bubble velocity to have a vertical component
in one of the side views.

Luther, Rensen & Guet [8] and de Vries [12] calculate the bubble shapeand
orientation from two 2D, mutually perpendicular side views (projections) of one
bubble, which they assume to be an oblate ellipsoid. They use a mathematical
description of the bubble orientation based on a combination of rotation matrices
which connect the laboratory frame to a frame attached to the bubble. They it-
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Figure 7.1:Two mutual perpendicular projections in a XYZ-laboratory frame. The angles
are taken positive counterclockwise. The orientation of the side views of the bubble are
arbitrary.

eratively calculate the bubble shape and orientation by assuming a certain bubble
shape and orientation and calculate the projections onto the two side views and
compare these projections with the real projections. By minimizing the error the
iteration will converge to the correct representation of the bubble.

In this section a method is introduced which is also based on a mathemati-
cal description with rotation matrices, but the set of equation are solved explicitly,
making this approach faster and more precise.

To reconstruct the bubble path, orientation and shape the digital images provided
by the high speed camera have to be processed. Each digital image consistsof two
2D, mutual perpendicular, side views (projections) of a single bubble (see figure
7.1). For a sphere the shape is knowna priori and the position of the center can
easily be extracted from the digital images. For a bubble only the position of the
center and hence its path is known.

It is well-known that the bubble can be assumed to be an oblate ellipsoid, with
major axesa andb (hencea = b) and minor axisc [4, 5, 13]. The aspect ratio of
the bubble is defined by

χ =
a

c
≥ 1. (7.1)

The bubble orientation is defined by the rotation anglesα, β, andγ, which will be
explained in detail in figure 7.2. The projections of an ellipsoid are ellipses [5, 12].
From the two projections the axes and orientation angles of these ellipses canbe
extracted (see also figure 7.1):

• the long axesd1 andd2,

• the short axese1 ande2, and
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• the orientation anglesψ1 andψ2 between the major axis and the horizontal
plane.

The following discussion will give a procedure to reconstruct the shapeand orien-
tation of the bubble. The aim is to find the relations:

(d1, d2, e1, e2, ψ1, ψ2) =⇒ (a, b, c, α, β, γ) , (7.2)

with the restriction thata = b = d1 = d2.

Consider an ellipsoid in anx′y′z′-frame with axesa, b, andc along thex′-, y′-,
andz′-axis, respectively. The convention for the three rotation angles (α, β, and
γ) can be found in figure 7.2. The first rotation, with angleγ, is around thec-axis,
and results in thex′′y′′z′′-frame. Thec-axis is the symmetry axis; thereforeγ is set
to zero. The second rotation with angleβ and the third rotation with angleα are
around they′′-axis andx′′′-axis, resulting in thex′′′y′′′z′′′-frame andx′′′′y′′′′z′′′′-
frame, respectively. Every rotation is governed by its unique rotation matrixRz,
Ry, andRx, respectively. Now denote thex′′′′ asX and the matrix product of
the three rotation matrices asR. X is a vector in the laboratory frame; the coor-
dinates of this vector can be taken directly from the two 2D side views, because
these are theY Z- andXZ-projections. The relation between a vector in a frame
with axes along the main axes of the ellipsoid and this vector in a frame fixed in
the laboratory can be written as

X = Rx′. (7.3)

For an oblate ellipsoid the rotation matrixR is

R = RxRyRz =





cosβ 0 sinβ
sinα sinβ cosα − sinα cosβ

− sinβ cosα sinα cosα cosβ



 . (7.4)

7.2.1 Calculation of the orientation

The minor axese1,2 in the two side views (figure 7.1) coincide with the projections
of the real minorc-axis. Therefore, the orientation of the minorc-axis follows im-
mediately for the two orientation anglesψ1 andψ2. Consider a point(Xc, Yc, Zc)
on the minor axis. The vector through this point and the origin expressed in lab-
oratory frame coordinates isRe3, with e3 the unit vector inz′-direction. Hence,
this is the third column of the total rotation matrixR:







Xc

Yc

Zc







=







sinβ
− sinα cosβ
cosα cosβ







. (7.5)
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Figure 7.2:Representation of the axes, angles, and rotation matrices.
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The orientation anglesψ1 andψ2 are related to this point by

tanψ1 =
Yc

Zc
= − tanα and tanψ2 =

Xc

Zc
=

tanβ

cosα
. (7.6)

From these equations the anglesα andβ can be calculated, resulting in

α = −ψ1 and β = tan−1 (cosψ1 tanψ2) . (7.7)

7.2.2 Calculation of the shape

For an oblate ellipsoid the axesd1 andd2 in the two side views should be equal.
As long as this is true, the reconstruction is correct. For the two major axes it is
assumed thata = d1 andb = d2. In contradiction to what is sometimes stated
in the literature, the minorc-axis is not equal to the axese1 ande2. These axes
are projections of the oblate ellipsoid and therefore always larger than, or at most
equal to, the minorc-axis.

The coordinates of the highest point on the ellipsoid(Xt, Yt, Zt) can be ex-
tracted from the two side views. This point is part of the ellipsoid and obeys the
equation for an ellipsoid in thex′y′z′-frame:

x′2t
a2

+
y′2t
b2

+
z′2t
c2

= 1 (7.8)

The axesa andb are known and the coordinates(x′t, y
′

t, z
′

t) in the body frame can
be derived from the coordinates(Xt, Yt, Zt) in the laboratory frame by:

x′

t = R−1Xt. (7.9)

Substituting this into the equation for the ellipsoid gives the minor axisc.

The two projections of the bubble in the digital images are detected using a thresh-
old for the gray value at which the bubble rim is located. This procedure is cali-
brated with the known bubble volume from the capillary after the bubble generator;
this leads to a maximum error of 1% in bubble volume. Now the bubble orientation
and shape can be reconstructed from the digital images the experimental results are
discussed in the next section.

7.3 Experimental results

Chapter 6 discussed the general features of single bubble motion. From the data
presented in that chapter six representative experiments are selected. The equiva-
lent diameterDeq, aspect ratioχ, path frequencyfpath, and Reynolds numberRe
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sub-figure Deq/mm χ Re fpath/Hz description

(a) 1.6 1.7 555 - rectilinear path
(b) 1.8 1.8 640 4.7 spiral path
(c) 1.9 1.8 654 4.7 spiral path
(d) 2.1 2.0 720 5.2 flattened spiral path
(e) 2.6 2.1 818 5.7 flattened spiral path
(f) 2.8 2.2 859 6.7 zigzag path, shape oscillations

Table 7.1:Overview of experiments with oblate ellipsoidal bubbles presented in this chap-
ter. The sub-figure numbers refer to the numbers of the sub-figures in sections 7.3.1 and
7.3.2. The last experiment shows an oscillating bubble as introduction to the next chapter.

for these experiments are given in table 7.1. In the next section the bubble path,
orientation and shape are discussed, followed by a section on the forcesand torques
acting on these bubbles and a section on the wake structure behind the bubble. The
regime of fixed bubble shape is limited to smaller bubbles and the size of the largest
bubble presented in this chapter is just above the bubble size for the onsetof shape
oscillations.

7.3.1 Bubble path, orientation and shape

Figures 7.3 and 7.4 show the 3D paths and the top views of the bubble, respectively,
where the gray values indicate the magnitude of the tangential velocity of a bubble.
The smallest bubble rises in a straight path, while larger bubbles rise along aspiral
with a constant velocity, which is maximal right after the path instability. The
horizontal amplitude of the bubble motion is at its maximum for a pure spiral (see
also figure 6.2(b)). For larger bubbles the path becomes flattened and the tangential
velocity becomes unsteady and decreases; this is a characteristic featurejust before
the onset of shape oscillations. Right at the onset of shape oscillations thebubble
rises along a zigzag path on which more details will be given in the next chapter.
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Figure 7.3:Measured trajectories of bubbles rising in water. The gray values represent
the tangential velocity of the bubbles, with the numbers next to the codes giving the corre-
sponding value in m s−1. Axes are non-dimensionalized with the equivalent diameter. See
table 7.1 for further details.
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Figure 7.4:Top views of bubbles rising in water. The gray values represent the tangential
velocity of the bubbles, with the numbers next to the codes giving the corresponding value
in m s−1. The * indicates the starting point of the trajectory. See table 7.1 for further
details.
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Figure 7.5:– Angle between the tangent and the horizontal plane, - - angle between the
minor axisc and the horizontal plane. Angles are given ino. See table 7.1 for further
details.

Figure 7.5 shows the angle between the tangent of the bubble trajectory andthe
horizontal plane, and the angle between the minor axisc and the horizontal plane.
The minor axis coincides with the tangent, which has also been found by Ellingsen
& Risso [5] and de Vries [12]. When the path instability sets in, the angle drops
from 90o for rectilinear motion to approximately 68o. Further increase of the bub-
ble size slightly decreases the angle.
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Figure 7.6:Shape of the bubble:– major axisa, - - major axisb, · − · minor axisc. See
table 7.1 for further details.

Figure 7.6 presents the axesa, b andc of the reconstructed bubble. The two ma-
jor axis a andb are directly taken from the two major axesd1,2 in the two side
views. For conveniencea = d1 andb = d2; so a breaking of axi-symmetry is
directly detected from figure 7.6. The two major axes are constant and indeed
equal, preserving axisymmetry as long as there are no shape oscillations. There is
a symmetry breaking at the onset of shape oscillations (d1 6= d2, hencea 6= b) as
can be seen in figure 7.6(f). Therefore the reconstruction of bubble orientation and
shape no longer holds in the regime of shape oscillations. Notice that all axes(a, b,
andc) exhibit a low amplitude frequency equal to twice the frequency of the path
oscillation. This is an artefact due to the bubbles moving in and out of focus of the
digital camera.
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7.3.2 Forces and torques acting on bubbles

The equations of motion with respect to a fixed laboratory frameXY Z for a mass-
less bubble moving through a quiescent liquid are given by

dI
dt

= −ρV g + F,
dA
dt

= T. (7.10)

HereI is the linear impulse of the irrotational fluid motion that would result if the
motion of the bubble would be generated instantaneously from a state of rest;and
in this respectA is the angular impulse. The density of the liquid is given byρ;
V is the volume of the bubble, andg the gravitational acceleration. The ’extrane-
ous’ forceF and torqueT are due to the presence of vorticity in the flow (see also
chapter 4). To solve the equations of motion it is helpful to use a Frenet reference
frame with unit vectorst, n, andb, already discussed in chapter 4. Lets(t) mea-
sure the distance travelled along the curve from some arbitrary initial instant.The
translational velocity of the bubble in the Frenet frame is

U =
ds
dt

t = U t, (7.11)

and the angular velocity

Ω =
ds
dt

(−τt + κb) (7.12)

about the instantaneous position of its axes, withτ the torsion andκ the curvature
of the curve. The momentum equations of the body now read

(

dI
dt

)

F

+ Ω × I = −ρV g + F, (7.13)

(

dA
dt

)

F

+ Ω ×A + U × I = T, (7.14)

where the first terms on the left-hand sides are the vectors formed by the rates of
change of the components of the virtual linear momentum, respectively angular
momentum, of the body with respect to the Frenet reference frame.

Figure 7.5 showed that the oblate ellipsoidal bubble is positioned with its minor
axis along the tangential vector. Therefore it follows that

I = AU t, (7.15)

whereA is an element of the added mass tensor and is given in Lamb [6, art.114]
for an oblate ellipsoid translating in the direction of its minor axis (see also (7.72)
in appendix B).

A = ρVMz, (7.16)
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with

Mz(χ) =
(χ2 − 1)

1

2 − cos−1 χ−1

cos−1 χ−1 − (χ2 − 1)
1

2 /χ2
.

Hereχ = a/c, is the aspect ratio of the oblate ellipsoid. Remember that the bubble
is without mass and axisymmetric around its minor axis. Therefore the angular
impulse in the direction of the symmetry axis is zero. Hence, the angular impulse
is

A = QUκb, (7.17)

whereQ is an element of the added mass tensor for rotation. The elementQ is
given in Lamb [6, art.115] (see also (7.77) in appendix B).

Q = 1
5ρV Rx, (7.18)

where

Rx(χ) = χ−
4

3 (χ2 − 1)−1 (γ0 − β0)

2 + [(χ2 + 1)/(χ2 − 1)](β0 − γ0)

with

β0(χ) =
χ2 cos−1 χ−1 − (χ2 − 1)

1

2

(χ2 − 1)
3

2

, γ0(χ) = 2
(χ2 − 1)

1

2 − cos−1 χ−1

χ2(χ2 − 1)
3

2

.

In the Frenet reference frame the equations of motion reduce to

A
dU
dt

= FD + ρV gt, AκU2 = FL,n + ρV gn, FL,b + ρV gb = 0, (7.19)

Tt = 0, QτκU2 = Tn, Q
dκU
dt

= Tb. (7.20)

In (7.19),FD is the component of the vortex force in the tangential direction; the
components in normal and bi-normal directions areFL,n andFL,b, respectively. In
(7.20)Tt, Tn, andTb are the components of the torque in the three directions of the
Frenet frame.

It should be mentioned that the reconstruction of these forces and torques has
also been done without assuming the bubble minor axis to coincide with the tan-
gent vector. Appendix A provides a detailed discussion of this second method.
The advantage is that small deviations from the alignment of the minor axis with
the tangent vector can be accounted for. After this more general reconstruction it
turned out that the equations of motion from (7.19) and (7.20) indeed represent the
dynamics of the bubble motion correctly.
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Figure 7.7:Lift force acting on the bubbles: –FL,n, - - FL,b. Notice the different scales
of theFL-axis. See table 7.1 for further details.

Lift and drag force

Figure 7.7 shows the components of the lift force acting on the bubble. For a
bubble rising straight (figure 7.7(a)) the lift force is zero. For a bubble rising in a
pure spiral (figures 7.7((b) and (c)) the lift force is non-zero and constant. The pitch
and diameter of a pure spiral are constant; together with a constant velocityalong
the spiral this results in a constant lift force. For a flattened spiral (figures 7.7(d)
and (e)) the lift force becomes unsteady. The lift force in the bi-normal direction
tends to zero, which is the case for a pure zigzag, because the bi-normalis the
vector normal to the zigzag-plane. The same features are still visible for a bubble
with shape oscillations (figure 7.7(f)) except for the high frequency oscillations
superimposed on the forces.

Figures 7.7 (d) to (f) show negative lift forces in the bi-normal direction. The
reason for this is the counterclockwise trajectories compared to the clockwise tra-
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jectories in figures 7.7 (b) and (c) (see figure 7.4). In the case of a counterclockwise
motion the bi-normal vector points in the positive Z-direction, whereas in clock-
wise direction the bi-normal vector points in the negative Z-direction.

Pure spiraling motion
The lift force in the normal and bi-normal direction are equal for the purespirals
(see figures 7.7 (b) and (c)). This can also be concluded from the analysis of the
vortex structure behind the bubble which will be shown in section 7.4, wherethe
vortex structure behind a spiraling bubble is analyzed in more detail.

Consider a spiraling bubble with a constant velocity in the Z-direction, an angle
θ between the tangential direction and the horizontalXY -plane and a path radius
R. The path curvature and torsion are given by

κ =
cos2 θ

R
, τ =

sin θ cos θ

R
. (7.21)

For a spiral the normal is positioned in a horizontal plane. Using (7.19) andthe
experimental observation that|FL,n| = |FL,b| leads to

U2 = ρgV
R

A cos θ
. (7.22)

From appendix B it is known thatA can also be written asρVMz, with Mz the
added mass factor, which is a function of the aspect ratioχ; hence,

U2 =
gR

Mz cos θ
. (7.23)

In the case of a spiral the velocity can also be written as:

U2 = (2π)2
f2

pathR
2

cos2 θ
, (7.24)

wherefpath is the path frequency. Combining (7.23) and (7.24) gives

(2π)2f2
path =

g cos θ

RMz
. (7.25)

The added mass coefficientMz hardly varies and is approximately one for these
bubbles. The possible spirals are limited to a select combination of path frequency,
angle with the horizontal plane and the radius of the spiral.
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Figure 7.8:Drag force acting on the bubbles. Notice the different scales of theFD-axis.
See table 7.1 for further details.

Figure 7.8 shows the drag force acting on the bubble. The drag force increases with
increasing bubble diameter. For the flattened spiraling motion the drag force be-
comes unsteady. For bubbles rising with shape oscillations the oscillations slightly
change the bubble dynamics, but the general characteristics of non-oscillating bub-
bles remain.
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Figure 7.9:- - Drag force, and· − · lift force (left axis), and – tangential velocity (right
axis). See table 7.1 for further details (sub-figure (e)).

Figure 7.9 shows the drag, lift, and velocity for the bubble from sub-figure (e) in
the previous figures. As is also the case for rising light spheres (see chapter 4), the
maxima for the drag and lift acting on the bubble do not coincide with maxima in
the velocity at the outer positions of the bubble path; the drag force is out ofphase
with the velocity. Hence, the generally used drag relation

FD ∼ U2 (7.26)

is not suitable. In section 7.4 the drag will be studied in more detail and a model
for it will be introduced that reflects this phase difference. For a more thorough
discussion of the lift force in the case of pure zigzagging motion and on the phase
difference between lift and velocity the reader is referred to section 4.4,dealing
with rising light spheres.
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Figure 7.10:Torque acting on the bubbles around the normal. Notice the different scales
of theTn-axis. See table 7.1 for further details.

The torque

Figure 7.10 shows the torque around the normal vector, which is zero fora rectilin-
early rising bubble. For the spiraling bubbles the torque is non-zero and constant
and its sign depends on the clock- or counter-clockwise motion as was also the case
for the lift force in the bi-normal direction (see figure 7.7). For the bubblerising
along a flattened spiral the torque shows a peak right in between the maxima ofthe
bubble path; this can also be seen in figure 7.12 (a) which shows the top view of
the bubble path with the torque around the normal indicated by gray values. This
behavior for a flattened spiral can be explained by looking at (7.20) andfigure 7.11,
which shows the curvaturesκ andτ for the bubble from sub-figure (e). When the
path is almost rectilinear, right in between the maxima of the bubble path, the cur-
vatureκ approaches zero and the torsionτ drops rapidly. For a pure zigzag the
negative peak in the torsion will be infinite, because the normal vector will change
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Figure 7.11:Path curvature and torsion for case (e). Figure (a) shows curvatureκ and
figure (b) shows torsionτ . See table 7.1 for further details (sub-figure (e)).
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Figure 7.12:Top views of rising bubble for case (e). The gray values represent the torque
in normal direction (figure (a)) and in bi-normal direction (figure (b)), respectively. The
numbers next to the figure give the corresponding value in×10−12Nm. See table 7.1 for
further details (sub-figure (e)).

sign instantly when the zigzagging bubble passes the zigzag centerline. Thesame
feature is still present for a bubble with shape oscillations, where the motion con-
sists of a high frequency caused by shape oscillations and a low frequency equal to
twice the path frequency (see figure 7.10 (f)).

Figure 7.13 shows the torque around the bi-normal vector, which remains zero as
long as the motion is steady. In figure 7.13(e) the motion is unsteady; both the cur-
vature and the velocity of the bubble are maximal at the outer positions of the flat-
tened spiraling motion. The torque is related to the time derivative of the product
of curvature and velocity (see (7.20)); it is therefore maximal between theposition
of maximum and minimum curvature, which can also be seen in figure 7.12 (b).
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Figure 7.13:Torque acting on the bubbles around the bi-normal. Notice the different
scales of theTb-axis. See table 7.1 for further details.

For a bubble with shape oscillations (figure 7.13 (f)) this behavior is hardly visible;
now the torque is dominated by the oscillations.

This section showed the calculated ’extraneous’ forces and torques acting on the
bubbles, which are due to the vorticity in the flow. To understand the effectof
this vorticity first the vorticity field behind the bubble is discussed in the next sec-
tion. Thereafter the relation between the vorticity field and the calculated forces is
analyzed.
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sub-figure Deq/mm χ Re description

(a) 1.3 1.4 546 rectilinear path
(b) 1.5 1.5 614 spiral path
(c) 2.0 1.6 797 spiral path
(d) 2.2 1.6 886 spiral path
(e) 2.5 1.8 980 flattened spiral path
(f) 2.8 1.9 1062 flattened spiral, shape oscillations

Table 7.2:Overview of Schlieren experiments with oblate ellipsoidalbubbles. The sub-
figure numbers refer to the numbers of the sub-figures in section 7.3.3. The last experiment
shows an oscillating bubble as introduction to the next chapter.

7.3.3 Bubble wake

The experiments described in the previous section have been done withoutusing
the Schlieren technique. In this way there is a better control of the water proper-
ties. In this section the wake of the bubble is our main interest. In order to visualize
the wake structures a constant vertical temperature gradient of 1.0 Kcm−1 is im-
posed on the water in the water tank. The temperature in the recorded field of
view (7 cm vertical distance) increases from 25oC at the bottom to 32oC at the top.
This results in a difference in the viscosity of the water between top and bottom
of approximately 14%. The density and surface tension are hardly effected by this
change in temperature; 0.20% for the density and 1.5% for the surface tension.
More details on the Schlieren technique can be found in chapter 2.

In this section the bubble wakes of six representative bubbles are shown. The bub-
ble trajectories are more or less similar to the six bubbles presented in the previous
sections. The path instability sets in at an equivalent diameter of 1.5 mm, which is
lower than the 1.72 mm for the non-Schlieren experiments. The reason for this is
the lower viscosity of the fluid as was also explained in chapter 6 with respectto
the experimental data of de Vries [12]. Shape oscillations set in at 2.8 mm, which
is in agreement with the non-Schlieren experiments. This was expected, because
the shape oscillations are driven by surface tension, which is hardly affected by the
temperature gradient.
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Figure 7.14 shows the wake structures behind the bubble. The visibility of thewake
strongly depends on the amount of distortion of the flow field. Therefore the wake
is better visible for the larger bubbles. Increasing the temperature gradient might
solve this problem, but this is hard to establish, because the temperature gradient is
affected by the thermal conductivity of the system. The amount of heat at the top
of the water tank was increased; this created a layer of warm water of almost con-
stant temperature at the top of the water tank, but hardly affected the temperature
gradient in the measurement section. Furthermore, a higher temperature gradient
changes the water properties even more, leading to larger deviations in riseveloc-
ity compared to experiments without the use of Schlieren. De Vries performeda
calculation to investigate the effect of the temperature gradient on the rise veloc-
ity of the bubble [12, Ch. 3,§ 3, p. 10-23]. He used an empirical relation for the
temperature dependent viscosity and solved the equations of motion with Levich’s
expression for the drag on the bubble (see also (7.80) in appendix B). He showed
that not only the increase of the temperature influenced the rise velocity, through a
drop in viscosity, but also the temperature gradient. In his calculation he simulated
a 2 mm diameter bubble with an initial velocity of 0.328 ms−1 in a temperature
field starting at 20oC with a gradient of 1.1 Kcm−1. The terminal rise velocity was
6% higher than the rise velocity for the case with a constant temperature of 28oC.

Figure 7.14 shows that the straight rising bubbles have an axisymmetric wake. The
wake becomes double-threaded when the path instability sets in. As stated before,
the shape oscillations set in at an equivalent diameter of 2.8 mm. Already at an
equivalent diameter of 2.5 mm the wake becomes unstable at the outer positions
of the somewhat flattened bubble path; the shape of the bubble is not influenced
by these instabilities in the wake. The presence of wake oscillations without shape
oscillations suggests that the wake oscillations trigger shape oscillations whenthe
bubbles are large enough, and not vice versa.
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Figure 7.14:Stereoscopic Schlieren images of bubbles with their paths:dash-dotted line
and bubble shape: solid line. Images are recorded with 640 frames/s. The bubble shapes
are plotted every 10 frames, giving a time interval of 0.64 s between the bubble shapes.
The elapsed time starting from the first bubble shape is indicated in the upper left corner.
The Reynolds numbers are (a) 546, (b) 614, (c) 797, (d) 886, (e) 980, and (f) 1062. See
table 7.2 for further details.
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7.4 A model for lift and drag

This section deals with the influence of the vorticity field behind the bubble on the
bubble motion. What is the relation between the structure and orientation of the
vorticity field and the vortex flow forces acting on the bubble? In section 7.3.2
the vortex flow forces have been identified. Section 7.3.3 provided us with aclear
view on the vorticity structure behind the bubble. With this knowledge a model is
constructed for the vorticity behind the bubble and several aspects with respect to
the generated forces are explained.

7.4.1 Vorticity structure behind the bubble

The Schlieren pictures reveal a double-threaded wake behind bubblesmoving in
a pure spiral. It is well-known that these two counter-rotating vortex threads give
rise to a force perpendicular to a local plane immediately behind the bubble in
which the two vortex threads are positioned, the vortex plane [e.g. 9]. We say ’lo-
cal plane’ because the vortex threads are curved and only locally a plane tangent
to these vortex threads can be defined. To calculate the contribution of the force
in the three main directions (tangential, normal and bi-normal) the orientation of
the vortex plane and the strength of the vortex threads is necessary. Therefore the
Schlieren images will be studied in more detail.

Consider a double-threaded wake behind a bubble. Depending on the angle be-
tween the vortex plane and the line of sight the distance between the two vortex
threads varies between a maximum distance and zero (then the two vortex threads
are overlapping in the particular view). Figure 7.15 shows a sequence ofthree im-
ages (A to C) of one side view of a spiraling bubble with two vortex threads accen-
tuated by white lines. The sequence starts with a maximum distance between the
two vortex threads and ends with zero distance. The middle image is taken when
the bubble reached its outer position of the spiraling path in this side view. The left
and right images are taken18 path oscillation period before and after, respectively.

Now consider figure 7.16, which gives a schematic top view on the bubble and
its path. The positions A, B, and C are marked and the vortex threads are repre-
sented as circles or dots, depending on the clock or counter clockwise rotation of
the vortex thread. The images of figure 7.15 were taken inY Z-direction. Recalling
that in position A the distance between the two vortex threads was maximal and in
position C zero, it is seen that the vortex plane is orientated under an angleψ1 of
45o with the bi-normal.

The normal vector for a pure spiral is oriented in a horizontal plane towards
the center of the spiral; the bi-normal vector is orientated along the spiral envelope.
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Figure 7.15:Spiraling bubble; left image: largest distance between vortex threads, middle
image: smaller distance, right image: zero distance. The positions of the bubble in the
images agree with positions A, B, and C in figure 7.16, respectively. The middle image
is taken when the bubble reached its outer position of the spiraling path in this side view.
The left and right images are taken1

8
path oscillation period before and after, respectively.

The dash-dotted line marks the path of the bubble. The white lines are accentuated vortex
threads.

Figure 7.16:Sketch top view spiraling bubble. The positions A, B, and C correspond to
the images in figure 7.15 from left to right, respectively. Right image: angleψ1 between
the vortex plane and the bi-normal.
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Because the angleψ1 is 45o, the lift force in normal and bi-normal direction should
be equal for a pure spiral. Recall figure 7.7 (b) and (c), which show that the lift
forces in normal and bi-normal direction are indeed equal, confirming the observa-
tions with respect to the orientation of the two vortex threads.

The second orientation angle of the vortex planeψ2 is an angle between the vortex
plane and the tangential direction. Although a direct link can be made with the
analysis of the vortex structure behind rising light spheres in chapter 4, the present
case differs in two aspects: (i) the bubble path is a spiral instead of more flattened
spirals/zigzags for the rising spheres, (ii ) the bubble wake consists of two stable
vortex threads instead of the unstable, turbulent sphere wake. Therefore the ap-
proach to calculate the orientation angleψ2 is slightly different. Recall that, in
chapter 4, this angle is calledψa.

The angleψ2 of the vortex plane with the tangent vector can be extracted from
the last image of figure 7.15 in which the two vortex threads overlap. So in the
Y Z-view we have two overlapping vortex threads and in theXZ-view the dis-
tance between the two threads is maximal. Hence the normal vector of the vortex
plane has no component inX-direction and theY - andZ-component can easily be
extracted from theY Z-view. Knowing the normal vector to the vortex plane, we
can easily calculate the angle between the vortex plane and the tangent vector, by
simply projecting the tangent vector onto the vortex plane. The angleψ2 can be
calculated from

t · tp = |t||tp| cosψ2, (7.27)

wheretp is the projection of the tangent vector onto the vortex plane. The angle
ψ2 is 210.

7.4.2 Generated lift

Consider a vorticity field consisting ofN closed vortex tubes. The force generated
on the bubble by this vorticity field is [2]

F = −ρ d
dt

(

∑

N

ΓN

∫

nidAN

)

, (7.28)

whereΓN is the circulation and
∫

nidAN is the projected area in the i-direction
of vortex tubeN . Now assume the two vortex threads, which are connected at the
moment they are generated, to resemble one closed vortex tube. The rate ofchange
of the projected area in the direction normal to the vortex plane is

d

∫

ndAN = lUdt, (7.29)
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with l the distance between the vortex threads, which we assume to be constant and
U is the velocity of the bubble in the direction of the vortex plane. Hence

U = Ut cosψ2, (7.30)

with Ut the tangential velocity of the bubble. The vortex flow force induced by two
vortex threads is

FΩ = ρlΓlUt cosψ2. (7.31)

The circulationΓ can be estimated from the velocity induced by one vortex thread
in the other vortex thread. Van Wijngaarden [14] studied the effect of trailing
vortices behind bubbles on the bubble velocity. He gives an expression for the
velocity induced by one vortex thread in the other, perpendicular to the vortex
plane, as function of the distance x behind the bubble (his expression (3.13))

Uf =
Γ

4πl

(

1 +

√

1 +
l2

x2

)

. (7.32)

From the Schlieren images the induced velocity can be extracted from the motion
of the vortex threads. Here we focus on the motion of the vortex threads some
diameters behind the bubble. The distance between the vortex threads is approx-
imately half the bubble diameter. Typically,l/x is approximately 0.02 and the
induced velocity becomes

Uf ≈ Γ

2πl
, (7.33)

as if the two vortex threads were infinite at both ends. Hence,

Γ ≈ 2πUf l, (7.34)

where the distancel and the self-induced velocityUf can be extracted from the
Schlieren images. For a spiraling bubble of1.9 mm diameter typical values are
l =0.52 mm andUf =3.0 cm/s, which is in nice agreement with De Vries [12],
who gives 0.6 mm and 3.0 cm/s for a bubble of 2.0 mm diameter.

The lift force acting on the bubble is

Fl = FΩ cosψ2. (7.35)

Figure 7.17 shows the reconstructed lift force and the modelled lift force for a
spiraling bubble: the agreement is clear.
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Figure 7.17: – measured lift, - - modelled lift. See table 7.1 for further details (sub-
figure (c)).

7.4.3 Lift-induced drag

The drag experienced by the bubble is related to vorticity in the boundary layer of
the bubble, creating a viscous contribution to the drag. Furthermore the shed vortic-
ity, consisting of the two vortex threads, can create a so-called ’lift-induced’ drag.
Because the angleψ2 is non-zero the vortex flow force induced by the two vortex
threads will have a component in tangential direction, this is the ’lift-induced’drag
(recall the discussion in chapter 4 on this subject). The lift-induced drag can be
written as

Fd,ind = FΩ cosψ2. (7.36)

The two vortex threads will also induce a velocity in the boundary layer; theyhave
an influence on the vorticity in the boundary layer and therefore on the viscous
contribution to the drag. Typical velocities in the boundary layer are of the order
of the bubble velocity. The previous section, on generated lift, showed that the
velocities induced by the two vortex threads are of the order of 10% of the bubble
velocity. Therefore it is assumed that the contribution of the velocity inducedby
the vortex threads in the boundary layer are negligible. The viscous contribution is
modelled as if the boundary layer is equal to the boundary layer around a rectilin-
early rising bubble. The viscous drag can now be modelled with Moore’s drag [10]
and is given by a combination of (7.80), (7.81) and (7.83) in appendix B

FD,visc = 6πµU2DeqG(χ) (7.37)

with

Gz(χ) =
1

3
χ4/3(χ2 − 1)3/2 (χ2 − 2) sec−1(χ) +

√

χ2 − 1)
(

χ2 sec−1(χ) −
√

χ2 − 1
)2 .
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Figure 7.18: Drag force acting on the bubbles. – measured drag, - - modelled drag,
· − · lift-induced drag, and·· viscous drag. Notice the different scales of theFD-axis. See
table 7.1 for further details.

The total drag on the bubble can be modelled with

FD = FD,visc + FD,ind. (7.38)

The same approach can be used to estimate the drag on larger bubbles, forwhich
the bubbles rise along more flattened spirals and thus the motion is unsteady. The
Schlieren experiments showed that the angleψ2 varies from 21 to 24o, which gives
rise to a maximal difference of 2% in the lift-induced drag. Because the wakeis
not visualized in the non-Schlieren experiments the angleψ2 is set to 22.5o.

Figure 7.18 shows the modelled drag (dashed lines) and its components the in-
duced drag (dash-dotted line) and the viscous drag (dotted line). The agreement
with the measured drag (the solid line) turns out to be rather good, even forthe
bubble with shape oscillations. For the purely spiraling bubbles the induced drag
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is approximately 20% of the modelled drag. The induced drag becomes more im-
portant when the bubble rises in an unsteady motion, because then the lift force,
hence the induced drag, has large-amplitude oscillations.

While this approach to drag supports the view of the mechanisms that gov-
ern the generation of flow-induced forces on the bubbles, it also suggests that any
variations in the viscous contribution to the drag associated with the ‘building-up’
of the vorticity field by diffusion and convection, and important at low Reynolds
numbers, are negligible at high Reynolds numbers, as was also the case for light
rising spheres (see chapter 4).

7.5 Conclusion

In this chapter we focussed on rising bubbles of fixed shape. The bubbles rise
with their minor axis aligned with the path, as was also observed by Ellingsen &
Risso [5]. Right after the onset of path instability the bubbles rise in a pure spiral,
whereas for somewhat larger bubbles the path becomes flattened and the motion
becomes unsteady. The largest bubble discussed in this chapter performed shape
oscillations.

For the purely spiraling bubbles the lift forces in normal and bi-normal direction
are equal, a feature which has not been reported before in an experimental study.
Analysis of the orientation of the vortex plane behind a spiraling bubble confirms
this equality of lift in normal and bi-normal direction. Implementing this feature
into the equations of motion for a purely spiraling bubble gives a simple relation
between the characteristics of the spiral and the shape of the bubble. Depending
on the rotation, clock- or counterclockwise, the lift force in bi-normal direction is
either positive or negative. Furthermore the lift in bi-normal direction vanishes for
zigzagging bubbles.

Analysis of the vorticity structure behind spiraling bubbles reveals that the
wake consists of two counter-rotating vortex threads, which account for the lift
necessary to curve the bubble path. Analysis of the strength of these threads en-
ables us to estimate the lift force. The estimate is in good agreement with the
experiments.

The drag experienced by the bubble is unsteady when the bubble moves in a
flattened spiraling motion and is out-of-phase with the bubble velocity. The gen-
eral approach that the drag scales with the bubble velocity squared doesnot hold.
The reason for this is the instantaneous vorticity contribution to the drag, the lift-
induced drag. For all bubbles performing path oscillations the orientation ofthe
plane through these threads immediately behind the bubble are measured and the
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lift-induced drag is calculated. It is shown that the measured drag can be modelled
correctly with a contribution related to viscous drag and a contribution relatedto
the lift-induced drag, which is induced instantaneously.

Appendix A: General equations of motion

This appendix deals with the calculation of the equations of motion for a rising
oblate ellipsoidal bubble.

Impulsive wrench
Consider the general case of a body translating and rotating in a fluid in 3D [6].
The flow potential of such a system can be written as

Φ = uφ1 + vφ2 + wφ3 + pχ1 + qχ2 + rχ3. (7.39)

The linear and angular velocity of the body are

U = (u, v, w)T andΩ = (p, q, r)T . (7.40)

The kinetic energy (T ) of the system is

2T = (NT · U) · U + (NR · Ω) · Ω + (NTR · U) · Ω. (7.41)

Here the subscript′T ′ denotestranslationand′R′ rotation. The coefficients of the
matrices are determined by the shape and position relative to the local coordinate
frame.

The linear and angular impulse of the system are

I =

{

dT

du
,
dT

dv
,
dT

dw

}T

= NT · U + NTR · Ω (7.42)

and

A =

{

dT

dp
,
dT

dq
,
dT

dr

}T

= NR · Ω + NTR · U. (7.43)

For an oblate spheroid with main axes coinciding with the local frame the linear
and angular impulse become

I =





A 0 0
0 A 0
0 0 C



 ·







u
v
w







andA =





Q 0 0
0 Q 0
0 0 0



 ·







p
q
r







. (7.44)
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It is clear that the calculation of the impulse of an oblate spheroid can best bedone
in a frame rotated such that the three axes of the ellipsoid coincide with the axes
of the local frame (see figure 7.2). The coefficientsA, C, andQ can be calculated
with (7.72), (7.74), and (7.77) in the next appendix.

Equations of motion
The equations of motion with respect to a frameXY Z fixed in the laboratory for
a massless bubble rising through a quiescent liquid are described by

dI
dt

= −ρV g + F,
dA
dt

= T. (7.45)

HereI is the linear impulse of the irrotational fluid motion that would result if the
motion of the bubble would be generated instantaneously from a state of rest;and
in this respectA is the angular impulse. The density of the liquid is given byρ; V
is the volume of the bubble, andg the gravitational acceleration. The ’extraneous’
forceF and torqueT are due to the presence of vorticity in the flow

The linear and angular impulse are best calculated in a frame, rotating with the
body (the′x′y′z′-frame in figure 7.2) as we saw in the previous discussion, but the
equations of motion are related to the impulse in theXY Z-frame. The relation
between a vector inXY Z-frame and′x′y′z′-frame is

X = R · x′. (7.46)

The time derivative of this vector is

dX
dt

= R · dx′

dt
+

dR
dt

· x′ (7.47)

= R · dx′

dt
+ R · RT · dR

dt
· x′ = R ·

(

dx′

dt
+ RT · dR

dt
· x
)

.

As the rotation matrix is orthogonal the following holds

d
dt

R · RT = 0 → R · dRT

dt
= −dR

dt
· RT . (7.48)

Hence the termRT · dR

dt
is an anti-symmetric matrix which consists of the angular

velocities of the rotating body frame

RT · dR
dt

=





0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0



 . (7.49)
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Hence
dX
dt

= R ·
(

dx′

dt
+ Ω × x′

)

, (7.50)

where the angular velocity vector, in terms of the time derivatives of the rotation
angles, is

Ω =
(

α̇ cosβ, β̇, γ̇ sinβ
)

. (7.51)

If theXY Z-frame and thex′y′z′-frame are overlapping at the time the time deriv-
ative is calculated, or for infinitesimal rotation, the rotation matrixR will be the
identity matrix, resulting in

dX
dt

=
dx′

dt
+ Ω × x. (7.52)

The time derivative of the linear impulse of the system can now be transformed
from x′y′z′-frame toXY Z-frame by

dIXY Z

dt
=

dIx′y′z′

dt
+ Ω × Ix′y′z′ . (7.53)

Now the general form of the equations of motion in thex′y′z′-frame is

dI
dt

+ Ω × I = −ρV g + F, (7.54)

dA
dt

+ Ω ×A = T, (7.55)

with Ω the rotation of the bubble, hence the rotation of thex′y′z′-frame, andU the
velocity of the bubble. Notice that theU × I-term as it is present in the equations
of Mougin & Magnaudet [11] only appears if one also accounts for a translation of
the local axes. Finally the forces and torques are projected onto the Frenet frame,
which was introduced in section 7.3.2.

In section 7.3.2 it is mentioned that the equations of motion are solved using
the observation that the minor axis and the tangent vector coincide; this resulted
in (7.19) and (7.20). That method and the method described in this appendix give
identical results for the forces and torques; this justifies the assumption thatthe
bubble minor axis and the tangent vector coincide.

Notice that for the oblate ellipsoidal bubble the angular velocity vector in terms
of the time derivatives of the rotation angles (γ=0, because no rotation around the
symmetry axis can be detected)

Ω =
(

α̇ cosβ, β̇, 0
)

(7.56)
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is related to the angular velocity of the Frenet frame

Ω =
ds
dt

[−τt + κb] . (7.57)

Projectingα̇ cosβ andβ̇ onto the normal and bi-normal directions indeed results
in a bi-normal contribution equal tods/dt κ only. Although the minor axis and the
tangent vector coincide the rotation around the minor axis is not detected properly.
This has no consequence for the bubble dynamics because the bubble is axisym-
metric around this axis.

Appendix B: Irrotational flow around oblate spheroids

This appendix deals with the irrotational flow around oblate spheroids. First the
ellipsoidal coordinate system will be introduced, followed by the velocity poten-
tial for the flow around oblate spheroids. From these flow potentials the virtual
momentum and dissipation will be calculated.

Ellipsoidal coordinate system

An orthogonal coordinate system can be described by

x = (q1, q2, q3), y = (q1, q2, q3), z = (q1, q2, q3)

h2
i =

(

∂x

∂qi

)2

+

(

∂y

∂qi

)2

+

(

∂z

∂qi

)2

,
∂

∂qi
=

1

hi

∂

∂qi
, i = 1, 2, 3. (7.58)

Here,hi are the so-called metric coefficients.

To describe the fluid motion around oblate spheroids an orthogonal systemof co-
ordinates(µ, θ, ϕ) is used; this system is related to a cartesian system(x, y, x)
by

x = k coshµ sin θ cosϕ
y = k coshµ sin θ sinϕ
z = k sinhµ cos θ,

(7.59)

whereµ is the variable perpendicular to the surface of the ellipsoid,θ the variable
tangent to the surface,ϕ the angle around the symmetry axis, andk =

√
b2 − c2.

Surfacesµ = constant,µ0 say, are the family of oblate spheroids

x2 + y2

b2
+
z2

c2
= 1, (7.60)
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with major and minor axes given by

b = k coshµ0, and c = k sinhµ0, (7.61)

respectively; their ratio is
χ = b/c = cothµ0.

The metric coefficientshµ, hθ andhϕ for the ellipsoidal coordinates are

hµ = hθ = k
(

sinh2 µ+ cos2 θ
)

1

2

hϕ = k coshµ sin θ.
(7.62)

Velocity potential

The velocity potentialΦ can be calculated from the Laplace equation:

1

k2(sinh2 µ+ cos2 θ) coshµ

∂

∂µ

(

coshµ
∂Φ

∂µ

)

(7.63)

+
1

k2(sinh2 µ+ cos2 θ) sin θ

∂

∂θ

(

sin θ
∂Φ

∂θ

)

+
1

k2 cosh2 µ sin2 θ

∂2Φ

∂ϕ2
= 0.

Lamb [6] shows by separation of variables that elementary solutions which vanish
at infinity have the form

Φ(µ, θ, ϕ) =
∞
∑

n=0

n
∑

m=0

cnmQ
m
n (sinhµ)Pm

n (cos θ) cosmϕ

+
∞
∑

n=0

n
∑

m=1

dnmQ
m
n (sinhµ)Pm

n (cos θ) sinmϕ. (7.64)

HerePm
n (cos θ) denotes the associated Legendre function,

Pm
n (cos θ) = sinm θ

dm

d(cos θ)m
Pn(cos θ) (7.65)

with 0 < m ≤ n andPn(cos θ) being the Legendre function of ordern [1]. The
functionsQm

n (sinhµ) follow from

Qm
n (sinhµ) = coshm µ

dm

d(sinhµ)m
Qn(sinhµ), (7.66)
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where theQn(sinhµ) (‘irregular Legendre functions of imaginary argument’) are
defined through the relations

Q0 = cot−1 (sinhµ) , Q1 = 1 − sinhµ cot−1 (sinhµ) ,

Qn = −
(

2n− 1

n

)

sinhµ Qn−1 +

(

n− 1

n

)

Qn−2. (7.67)

Translation along the minor axis

Consider the steady motion of an oblate spheroid with velocityW in the direction
of thez′-axis, which coincides with the minor axis. The velocity potential for the
motion of the ellipsoid, in a fixed reference frame with the origin instantaneously
coinciding with the center of the ellipsoid, is [6]:

Φ(µ, θ) = c10
[

1 − sinhµ cot−1(sinhµ)
]

cos θ; (7.68)

where, if the body surface is assumed to be specified byµ = µ0,

c10(µ0) = − Wk

cot−1(sinhµ0) − sinhµ0/[1 + sinh2 µ0]
.

Translation along a major axis

For the motion in the plane normal to the minor axis, say thex-direction, with
velocityU the velocity potential is [6]:

Φ(µ, θ, ϕ) = −c11 coshµ

[

sinhµ

1 + sinh2 µ
− cot−1(sinhµ)

]

sin θ cosϕ; (7.69)

with

c11(µ0) =
Uk

cot−1(sinhµ0) − [sinh2 µ0 + 2]/{sinhµ0[1 + sinh2 µ0]}
.

Rotation about a major axis

Consider the rotation of an oblate spheroid about one of its major axes, saywith
angular velocityΩ around thex-axis. The velocity potential turns out to be:

Φ(µ, θ, ϕ) = d21 coshµ

[

3 sinhµ cot−1(sinhµ) − 3 +
1

1 + sinh2 µ

]

sin θ cos θ sinϕ, (7.70)
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with

d21(µ0) =
k2Ω

[6 sinh2 µ0 + 3] cot−1(sinhµ0) − 6 sinhµ0 − sinhµ0/[1 + sinh2 µ0]
.

Virtual momentum

From the velocity potential the virtual momentum can be calculated.

Translation along the minor axis

The virtual momentum of the ellipsoid is defined as

IBz = −ρ
∫

WdV = −ρ
∫

∇zΦdV = −ρ
∫

Φnz dS. (7.71)

On substituting the solution (7.68) for the velocity potentialΦ and the expressions
given in appendix C for the area of the surface element dS and thez-component of
the normal to the surface it is found that

IBz = ρVWMz,

with

Mz(χ) =
(χ2 − 1)

1

2 − cos−1 χ−1

cos−1 χ−1 − (χ2 − 1)
1

2 /χ2
. (7.72)

Hereχ = b/c, is the aspect ratio of the oblate spheroid. Notice thatA mentioned
in (7.19) is equal toρVMz.

Translation along a major axis

The virtual momentum of the ellipsoid is now defined as

IBx = −ρ
∫

Φnx dS. (7.73)

Substituting the solution (7.69) for the velocity potential and the expressions given
in appendix C for the area of the surface element dS and thex-component of the
normal to the surface this becomes

Ix = ρVUMx,
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Figure 7.19:(a) Mz(χ) as function ofχ, (b) Mx(χ) as function ofχ.

with

Mx(χ) =
(χ2 − 1)

1

2 − χ2 cos−1 χ−1

χ2 cos−1 χ−1 − [2χ2 − 1](χ2 − 1)
1

2

. (7.74)

Figure 7.19 shows the plots of the factorsMz andMx as a function of the aspect
ratio of the bubble. The added mass increases with the aspect ratio for motionin
the direction of the minor axis and decreases for motion in the direction of the
major axis.

Rotation about a major axis

The virtual angular momentum of an ellipsoid rotating with angular velocityΩ
about thex-axis is

Ax = −ρ
∫

Φ [ynz − zny] dS. (7.75)

Let ae denote the equivalent radius of a sphere with equal volume, defined through

V = 4
3πa

3
e = 4

3πb
2c. (7.76)

Using the solution (7.70) for the velocity potential and the expressions given in
appendix C for the area of the surface element dS and they- andz-components of
the normal to the surface one may then also write

Ax = 4
15πρa

5
e ΩRx,

where

Rx(χ) = χ−
4

3 (χ2 − 1)−1 (γ0 − β0)

2 + [(χ2 + 1)/(χ2 − 1)](β0 − γ0)
(7.77)
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with

β0(χ) =
χ2 cos−1 χ−1 − (χ2 − 1)

1

2

(χ2 − 1)
3

2

, γ0(χ) = 2
(χ2 − 1)

1

2 − cos−1 χ−1

χ2(χ2 − 1)
3

2

.

Notice thatQ mentioned in (7.20) is equal to15ρV Rx.

Dissipation

Irrotational flow can provide a good estimate for the force on a body at high
Reynolds numbers, i.e. for sufficiently thin boundary layer. The dissipation in
the fluid outside the boundary layer is now is dominant over the dissipation in the
boundary layer. The dissipationD in the fluid can be calculated by

D = −µ
∫

A
∇U2 · ndA, (7.78)

with ν the kinematic viscosity of the fluid. Substituting the velocity potential, the
dissipation becomes:

D = −µ
∫ π

0

1

hµ

∂

∂µ

{

(

1

hµ

∂Φ

∂µ

)2

+

(

1

hθ

∂Φ

∂θ

)2

+

(

1

hφ

∂Φ

∂φ

)2
}

hφdφhθdθ,

(7.79)
wherehi are the metric coefficients in an ellipsoidal coordinate system as defined
in (7.62). In general the dissipation can be written as

D = 12πµUireqGi(χ), i = x, y, z. (7.80)

Translation along a minor axis

For the motion along the minor axis we substitute the velocity potential (7.68)
resulting in

Gz(χ) =
1

3
χ4/3(χ2 − 1)3/2 (χ2 − 2)sec−1(χ) +

√

χ2 − 1)
(

χ2sec−1(χ) −
√

χ2 − 1
)2 . (7.81)

This was already found by Moore [10].
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Figure 7.20:(a) Gz(χ) as function ofχ, (b) Gx(χ) as function ofχ.

Translation along a major axis

For the motion along the major axis we can proceed in a similar way. We substitute
the velocity potential (7.69), resulting in

Gx(χ) =
2

3
χ−2/3(χ2 − 1)3/2 (χ2 − 2)

√

(χ2 − 1) + χ4sec−1(χ)
(

(2χ2 − 1)
√

χ2 − 1 − χ2sec−1(χ)
)2 . (7.82)

An expression which, to the authors’ knowledge, has not been reported before.

Figure 7.20 shows the plots of the factorsGz andGx as a function of the as-
pect ratio of the bubble. For the aspect ratioχ=1 the dissipation reduces to the
spherical case. The higher the aspect ratio the higher the dissipation formotion in
the direction of the minor axis will be. For the motion along the major axis there
is a minimum. First the frontal surface area of the bubble decreases fasterthan
the total surface of the bubble. Later the frontal surface area hardly increases and
the dissipation is increased by an increase in total surface area, because the bubble
becomes flatter.

Finally, for the steady motion of a single bubble the force experienced by the
bubble at high Reynolds numbers can be calculated from the dissipation in thefluid
by

FD = DU. (7.83)

Appendix C: Surface of an oblate spheroid

This appendix deals with the calculation of the surface of an oblate spheroidin
ellipsoidal coordinates (µ, θ, ϕ).
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Consider a point on the surface specified as

r =







x = b(θ, ϕ) sin θ cosϕ
y = b(θ, ϕ) sin θ sinϕ
z = c(θ, ϕ) cos θ

, (7.84)

with
b(θ, ϕ) = k coshµ(θ, ϕ), c(θ, ϕ) = k sinhµ(θ, ϕ).

The normal to a surface parameterized byθ andϕ is, in cartesian co-ordinates,

n =
rθ × rϕ

|rθ × rϕ|
=

rθ × rϕ√
EG− F 2

(7.85)

with

E = rθ · rθ,

F = rθ · rϕ,

G = rϕ · rϕ.

It follows that

E = b2 cos2 θ + c2 sin2 θ + 2(bbθ − ccθ) sin θ cos θ + b2θ sin2 θ + c2θ cos2 θ,

F = (bbϕ − ccϕ) sin θ cos θ + bθbϕ sin2 θ + cθcϕ cos2 θ, (7.86)

G = b2 sin2 θ + b2ϕ sin2 θ + c2ϕ cos2 θ.

The area of surface is

S =

∫ 2π

0

∫ π

0

√

EG− F 2 dθdϕ (7.87)

For our oblate ellipsoidal bubble this reduces to

S = 2π

∫ π

0

√
EGdθ = 2π

∫ 1

−1
b
√
Edcos θ. (7.88)

The mean curvatureH of the oblate ellipsoid is given by

2H =
EN +GL

EG
, (7.89)

with E andG given above and

L = n · rθθ =
(rθ × rϕ) · rθθ

|rθ × rϕ|
, (7.90)
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N = n · rϕϕ =
(rθ × rϕ) · rϕϕ

|rθ × rϕ|
. (7.91)

It is straightforward to show that

2H = −sinhµ0(1 + sinh2 µ0)
1

2

k(sinh2 µ0 + cos2 θ)
3

2

− sinhµ0

k(sinh2 µ0 + cos2 θ)
1

2 (1 + sinh2 µ0)
1

2

.

(7.92)
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Chapter 8

Motion of bubbles with shape
oscillations‡

The previous chapter dealt with bubbles of fixed ellipsoidal shape. In thischapter
larger bubble diameters will be considered which cause shape oscillationsto set
in. Literature, mainly the work by Lunde & Perkins [11], will be discussedand the
present experimental results will be compared with their results.

For bubble sizes right at the onset of shape oscillations the stable spiraling
motion changes into a pure zigzagging motion. This is due to a coupling with
the non-axisymmetric mode (2,2) shape oscillation. Larger bubbles rise inmore
or less spiral paths. Finally multiple shape oscillations force the bubble into an
erratic path. All bubbles show an axisymmetric mode (2,0) shape oscillationwhich
is coupled with velocity oscillations and therefore with oscillations in the wake.

The analytical method to calculate shape oscillations on spherical bubbles (e.g.
[2, 7]) is extended to shape oscillations on ellipsoidal bubbles. The limiting case
for aspect ratio one is calculated correctly but the method results in deviations
from numerical calculations by Meiron [13] for higher aspect ratios. A correct
closure of the model is still in progress. A similar approach has been used to derive
an analytical expression for volume oscillations on oblate ellipsoidal bubblesas
function of the aspect ratio. Evaluation of this expression at several aspect ratios
provides frequencies which agree with numerical data of Strasberg [19].

‡adapted from: C.H.J. Veldhuis, A. Biesheuvel, & L. van Wijngaarden,Shape oscillations on
ellipsoidal bubbles, to be submitted to J. Fluid Mech. (2007)
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8.1 Introduction

Lindt [8] is one of the first to report on bubbles performing shape oscillations.
Following the regime with an oblate spheroid in helical motion Lindt finds oblate
spheroids with shape oscillations in almost rectilinear motion starting at an equiv-
alent diameter of 4.8 mm (see figure 6.1). In chapter 6 we already saw that shape
oscillations in our experiments start at 2.8 mm for purified water and 3.0 mm for
tap water. The difference with Lindt’s findings is attributed to the lack of time res-
olution in his experimental data, because no high speed imaging was available to
him.

Lunde & Perkins [11] also studied the shape oscillations on ellipsoidal risingbub-
bles. They provide an overview of bubble experiments for diameters of 2.4, 3.02,
3.52, 4.32, and 5.16 mm. They used stereoscopic high speed imaging (up to
500 frames/s) and extracted two major axes (d1 andd2) from their digital images.
These axes are identical to the axesd1 andd2, defined in figure 7.1. Lunde &
Perkins distinguish between axisymmetric and non-axisymmetric shape oscilla-
tions. Therefore they perform a Fourier analysis on the product of thetwo mea-
sured axes (d1 · d2) and their ratio (d1/d2). For axisymmetric shape oscillations
the axes will change in phase; the product of the two axes will amplify the oscilla-
tions, whereas their ratio will cancel the oscillations. For non-axisymmetric shape
oscillations the axes will change out of phase; therefore their ratio will amplify the
oscillations.

Lunde & Perkins analyzed the acceleration of the bubble along its path and
showed a clear interaction between oscillations of the acceleration and axisymmet-
ric shape oscillations; this is in agreement with de Vrieset al. [20]. They studied
the effect of oscillations in the aspect ratio on the velocity of the bubble and showed
that only by taking into account these oscillations the rise velocity of the bubble
can be modelled properly.

Comparison with numerical work of Meiron [13] suggests that the axisym-
metric and non-axisymmetric frequencies detected by Lunde & Perkins are of
mode (2,0) and (2,2), respectively. They state that the axisymmetric mode (2,0)
’travels’ from pole to pole and the non-axisymmetric mode (2,2) ’travels’ around
the equator. Assuming the bubble to be an oblate ellipsoid and the oscillations to
be capillary waves, Lunde & Perkins give approximate expressions formode (2,0)
and (2,2), respectively

f2,0 =
1

2π

√

16
√

2χ2

(χ2 + 1)3/2

√

σ

ρlr3eq
and f2,2 =

1

2π

√

8

χ

√

σ

ρlr3eq
, (8.1)

whereσ is the surface tension coefficient. Note that these expressions do not reduce
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to the frequency of a spherical bubble (χ = 1). Comparison with results from Me-
iron [13] shows that these expressions are accurate within 8% for1.5 < χ < 3.5.
The bubbles examined by Lunde & Perkins and the experiments discussed inthis
report lie well within this range.

Lunde & Perkins also investigated the wake of bubbles. They stated that thevortex
shedding frequency is equal to twice the path frequency (approximately constant at
6.5 Hz for a wide range of bubble diameters). This idea follows from dye-injection
experiments with zigzagging ellipsoidal particles which shed large amounts of vor-
ticity at the outer positions of the zigzag. Lunde & Perkins did not analyze the
bubble wake in uncontaminated fluids, where the bubbles have a no-shearbound-
ary condition. As will become clear from the Schlieren experiments in purified
water (see section 8.2.2), the bubble wake is completely different and the vortex
shedding frequency is not equal to twice the path frequency, but much higher.

In section 8.2 the experimental results will be presented and compared with the
literature; new insights with respect to the relation between path, shape and wake
of the bubble will be discussed. In section 8.3 an analytical method to calculate
shape oscillations on an oblate ellipsoidal bubble will be discussed. Section 8.4 is
left to conclutions. At the end of this chapter two appendices are included.Ap-
pendix A discusses the calculation of the surface of an oblate spheroid to second
order. This is follow by appendix B on the calculation of the volume oscillation
frequency of an oblate spheroid.

8.2 Experimental results

In chapter 6 the general features of single bubble motion are discussed.From these
data six representative experiments are selected. The equivalent diameter Deq, as-
pect ratioχ, path frequencyfpath, and Reynolds numberRe for these experiments
are given in table 8.1.

In the next section the bubble path, orientation, and shape will be discussed fol-
lowed by a section on the wake structure behind the bubble, and finally a section
on the interaction between path, shape and wake oscillations.

8.2.1 Bubble path, orientation and shape

Figure 8.1 shows the 3D bubble path with gray values indicating the bubble veloc-
ity for the six representative bubbles; figure 8.2 shows the top view in this respect.
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Figure 8.1:Measured trajectories of bubbles rising in water. The gray values represent
the tangential velocity of the bubbles, with the numbers next to the codes giving the corre-
sponding value in m s−1. Axes are non-dimensionalized with the equivalent diameter. See
table 8.1 for further details.
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Figure 8.2:Top views of bubbles rising in water. The gray values represent the tangential
velocity of the bubbles, with the numbers next to the codes giving the corresponding value
in m s−1. The ’*’ indicates the starting point of the trajectory. Seetable 8.1 for further
details.
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sub-figure Deq/mm χ Re fpath/Hz path

(a) 3.0 2.2 899 6.7 zigzag
(b) 3.4 2.2 973 7.0 zigzag
(c) 3.6 2.3 1018 5.5 spiral
(d) 4.0 2.4 1096 6.5 flattened spiral
(e) 4.5 2.7 1162 6.2 tilted flattened spiral
(f) 5.2 2.8 1305 5.2 chaotic

Table 8.1:Overview of experiments with bubbles with shape oscillations presented in this
chapter. The sub-figure numbers refer to the numbers of the sub-figures in section 8.2.1.

In chapter 6 several reasons were given for these bubbles to have reached their final
stage of motion. The first two bubbles, (a) and (b), are purely zigzagging bubbles.
Hence, in contrast to what has been stated in the literature [12, 17], a zigzagging
path can be a stable solution for the rising bubble. The reason for this zigzagging
motion will become clear when the shape oscillations of the bubble are discussed.

Increasing the bubble size changes the bubble path into a curve of, roughly,
spiral form (figures 8.2(c) and (d)). The largest bubbles (figures 8.2(e) and (f))
are so-called rocking bubbles for which the motion is more random. In all cases
the velocity has large oscillations. The characteristic high velocities at the outer
positions of the zigzag or flattened spiral, as has been reported in chapter7 for
bubbles without shape oscillations, are hardly visible.

Figure 8.3 shows projections of bubble shape and path onto the verticalXZ
andY Z-plane. Whereas the smallest bubbles still resemble an ellipsoid with small
amplitude shape oscillations and a minor axis aligned with the bubble path, the
largest bubbles experience large amplitude shape oscillations and their basic shape
is far from ellipsoidal. It is clear that the reconstruction of bubble shape and ori-
entation, as presented in chapter 6, is not valid in this regime. But still a small and
a large axis can be detected in each projection (e1,2 andd1,2, respectively, see also
figure 7.1). Hence, an analysis of the bubble shape oscillation frequencies, in the
sense of Lunde & Perkins as described in the introduction, is possible.
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Figure 8.3: Stereoscopic images of bubbles with their paths and shapes.Images are
recorded with 640 frames/s. The bubble shapes are plotted every 10 frames, giving a time
interval of 0.64 s between the bubble shapes. See table 8.1 for further details.

Relation between oscillations in shape and velocity
Figure 8.4 presents normalized power spectra of the tangential velocity of the bub-
ble, the product of the two major axes and their ratio. The power spectra are nor-
malized with their average value. On the vertical axis in figure 8.4|FFT | means

|F(f(t))| / |F(f(t))|,

with F the Fast Fourier Transform of a functionf(t). Before the Fourier transform
is calculated, the average off(t) is subtracted. Now the power spectrum does not
show any pronounced peaks equal to the inverse of the duration of an experiment.
The typical duration of an experiment is approximately 0.2 s. The path frequency
is approximately 5-7 Hz; hence, the period of path oscillation varies between0.14
and 0.2 s. Therefore the path frequency cannot be detected in the normalized power
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Figure 8.4: Normalized power spectra of tangential velocity and shape.Upper plot:
|FFT Ut|, Lower plot: – |FFT d1/d2| and - - |FFT d1d2|. See table 8.1 for further
details.
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spectra in figure 8.4.
At the onset of shape oscillations there are only two basic modes. Meiron [13]

calculated the frequency of shape oscillation modes (n,m), with n = 2, 3, .. and
m = 0, .., n, using a linear stability analysis. Comparison of our experiments
with his results shows that the two basic modes are the axisymmetric mode (2,0)
and the non-axisymmetric mode (2,2), as was also found by Lunde & Perkinsand
with respect to the axisymmetric mode by de Vrieset al. [20]. For larger bubbles
multiple frequencies are present, which cannot be linked with frequenciesof higher
modes (n > 2) calculated by Meiron, because frequencies for mode 3 and higher
are larger than approximately 150 Hz. It is more likely that the other frequencies
are caused by non-linear effects.

For the smaller bubbles there is a clear coupling between the frequency of the
tangential velocity and the axisymmetric shape oscillation. The larger the bubble
the more frequencies appear, and the more random the bubble path becomes. But
the coupling between the mode (2,0) shape oscillation and the tangential velocity
remains. This coupling can be understood by recalling that the mode (2,0) implies
an oscillation of the bubble aspect ratio. Therefore the added mass and drag are
influenced, leading to an effect on the velocity of the bubble [20]. This becomes
clear by looking at the momentum balance in tangential direction which states

ρV
d

dt
(Mz(χ)U) ≈ ρV gt + 6πµUDeqGz(χ) + FD,ind. (8.2)

Here, the added mass coefficientMz is given in (7.72) in appendix B of chap-
ter 7. The second term on the right hand side is the viscous contribution to the
dragFD,visc, whereGz is given by (7.81) in appendix B of chapter 7. Figures 7.19
and 7.20 in this appendix show the dependence of added mass and drag onthe
aspect ratio. Typical variations in the aspect ratio are of the order of 20% leading
to variations in added mass and drag coefficients of approximately 8% and 4%, re-
spectively. De Vrieset al. [20] studied the effect of oscillations in drag and added
mass on the rise velocity of a bubble. From experiments they extracted the shape of
the bubble. This enabled them to calculate the drag and added mass coefficients and
solve (8.2) with a Runge-Kutta scheme. They showed that oscillations in the calcu-
lated rise velocity of the bubble only agree with oscillations in the experimentally
measured rise velocity if added mass is taken into account. For the relatively large
bubble studied, the effect of the drag is much less than the effect of the added mass.

Relation between oscillations in shape and path
Figure 8.4 shows that the velocity of the bubble is not influenced by the non-
axisymmetric mode, because this mode does not change the aspect ratio and there-
fore the added mass and drag. But there is an influence on the bubble path, which
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Figure 8.5:Bubble along a zigzag path. Arrows indicate direction of force due to pressure
difference.

becomes clear when figures 8.2 and 8.4 are compared. The non-axisymmetric
shape oscillation is clearly present in figures 8.4(a) and (b); the path of the bubble
is a zigzag, as can be seen in figures 8.2(a) and (b). For the third bubble (fig-
ure 8.4(c)) the non-axisymmetric shape oscillation is less pronounced; the bubble
path is a spiral. The fourth bubble shows a non-axisymmetric shape oscillation,
although the peak is less pronounced than for the bubbles in (a) and (b). The bub-
ble now performs a flattened spiraling motion. Obviously there is an interaction
between the bubble path and the non-axisymmetric shape oscillation; the zigzag
path can be directly coupled to the presence of non-axisymmetric shape oscilla-
tions. The reason for this interaction is the breaking of the axisymmetry of the
system in case of a zigzagging motion. A spiraling path is axisymmetric and does
not give rise to non-axisymmetric shape oscillations, as is shown by the bubble in
figure 8.4(c). A zigzagging motion forces the bubble to have a non-axisymmetric
shape. Figure 8.5 schematically shows a bubble aligned with a zigzag path. In
order to move along a zigzag curve an effective horizontal force has tobe present.
Therefore the pressure outside the bubble on the two sides will be different (p+

o and
p−o ). The positions ofp+

o andp−o change depending on the location on the zigzag
curve. This leads to a local difference in curvature, becausepi − po = σ∇ · n,
with pi the pressure inside,po the local pressure outside the bubble and∇ · n the
local curvature, and the bubble axisymmetry breaks. For a spiraling bubble this
axisymmetry is far less pronounced because of the larger radius of curvature of the
path compared to the zigzagging path. Furthermore the curvature of the spiral path
is steady, in contrast to the unsteady zigzagging motion. Therefore the presence
of non-axisymmetric shape oscillations is expected for zigzagging bubbles and not
for spiraling ones.
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Deq/mm f2,0/Hz f2,2/Hz fpath/Hz f2,2/fpath path

3.0 61.8 40.6 6.7 6.0 zigzag
3.4 50.7 34.0 7.0 4.9 zigzag
3.6 45.5 - 5.5 - spiral
4.0 39.0 20.5 6.5 3.2 flattened spiral
4.5 - 17.5 6.2 2.8 tilted flattened spiral
5.2 - 14.0 5.2 2.7 chaotic

Table 8.2: Relation between shape oscillations and bubble path. ’-’ Means no distinct
frequency detected.

Table 8.2 summarizes the frequencies for the six bubbles in figure 8.4. The
frequency of the mode (2,2) oscillation is linked with a multiple of the path os-
cillation frequency. The better the ’fit’ of these frequencies, the flatter thebubble
path. Notice that the path frequency of zigzagging bubbles is slightly higherthan
the path frequency of spiraling bubbles. It seems that the non-axisymmetricshape
oscillations are able to change and ’lock-in’ the path frequency.

8.2.2 Bubble wake

In this section the wakes of four representative bubbles are shown. The develop-
ment in bubble motion is similar to that of the six bubbles presented in the previous
section. Table 8.3 shows the relevant parameters for these experiments.

Figure 7.14(a) to (e) presented the wake behind bubbles of fixed shape. In fig-
ure 7.14 (f) shape oscillations set in. Figure 8.6 starts with the bubble in fig-
ure 7.14 (f) and continues with Schlieren images of larger bubbles. At the onset
of shape oscillations the unsteady wake is rather structured. The wake consists of
regions of concentrated vorticity, which are shed at a specific frequency. Increas-
ing the bubble diameter destabilizes the wake. The single vortex shedding fre-
quency disappears and no specific frequencies are detected any longer. This is in
agreement with the Fourier analysis of the bubble shape and velocity, whichshows
multiple frequencies for larger bubble diameters (see figure 8.7). Notice again the
coupling between mode (2,0) and the velocity. Furthermore, the non-axisymmetric
mode (2,2) is strongest when the bubble performs a zigzagging motion (figures
8.7(b) and (c)) as was also the case for the non-Schlieren experiments.
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sub-figure Deq/mm χ Re path

(a) 2.8 2.1 1062 spiral
(b) 3.5 2.2 1197 zigzag
(c) 3.9 2.3 1289 zigzag
(d) 5.5 2.7 1674 chaotic

Table 8.3:Overview of Schlieren experiments of bubbles with shape oscillations. The
sub-figure numbers refer to the numbers of the sub-figures in section 8.2.2.

From the Schlieren images the wake frequency can be extracted. The largest bub-
bles have a highly irregular wake consisting of multiple frequencies. Therefore
the wake frequency cannot be detected for bubble diameters larger than3.5 mm.
Table 8.4 shows the wake frequencies for seven bubbles with shape oscillations.
We clearly see the wake oscillation frequency decreasing with increasing bubble
diameter. In the next section we will see how the wake oscillations are coupled
with oscillations in velocity and shape.

Deq/mm 2.8 2.9 3.1 3.1 3.3 3.4 3.5
fwake/Hz 74 65 65 54 48 45 46

Table 8.4:Wake frequencies for several bubble diameters.
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Figure 8.6:Stereoscopic Schlieren images of bubbles with their paths:dash-dotted line
and bubble shape: solid line. Images are recorded with 640 frames/s. The bubble shapes
are plotted every 10 frames, giving a time interval of 0.64 s between the bubble shapes.
The elapsed time starting from the first bubble shape is indicated in the upper left corner.
The Reynolds numbers are (a) 1062, (b) 1197, (c) 1289, and (d) 1674. See table 8.3 for
further details.
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Figure 8.7: Normalized power spectra of tangential velocity and shape.Upper plot:
|FFT Ut|, Lower plot: – |FFT d1/d2| and - - |FFT d1d2|. See table 8.3 for further
details.
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8.2.3 Interaction of path, shape, and wake oscillations

The bubble path, shape and wake and their oscillations are discussed; thissection
focusses on the interaction between these aspects.

Shape oscillations frequency versus bubble diameter
Figure 8.8(a) shows the oscillation frequencies of shape, velocity, and wake ver-
sus the equivalent bubble diameter for bubbles rising in purified water. These data
agree well with the experimental data of Lunde & Perkins [11] (see figure8.8(c)).
They performed a series of five experiments at six bubble diameters and averaged
the results over these five experiments; therefore their scatter is much smaller.
Lunde & Perkins performed some experiments to visualize the wake structure, but
detailed information is never obtained. They recorded zigzagging ellipsoidal parti-
cles where vorticity is shed at the outer positions of the zigzagging path. Therefore
the wake frequency is assumed to be twice the path frequency [10]. The present
Schlieren experiments show a different view of the wake dynamics of bubbles; the
frequencies are higher than twice the path frequency and are given in the previous
section and also plotted in figure 8.8(a) with ’*’. There is a match between axisym-
metric shape oscillations and oscillations in the wake. This is due to the change
in momentum of the bubble when the axisymmetric shape oscillation changes the
bubble aspect ratio. Any change in velocity and shape modifies the production of
vorticity at the bubble surface; these variations will be visible in the wake. One
might think that the shape oscillations are directly coupled with the wake oscilla-
tions and not indirectly through the bubble velocity. Figure 7.14(e) suggests other-
wise; here wake instabilities for a bubble performing a flattened spiral occur before
shape oscillations are present, suggesting that wake oscillations are triggered by ve-
locity oscillations rather than shape oscillations. It seems that any shape oscillation
first has to trigger velocity oscillations before there will be any effect on the wake;
this effect can also be observed for bubbles rising in tap water as we will see now.

Figure 8.8(b) shows the oscillation frequency of shape and velocity for bub-
bles rising in tap water. There is a large scatter in the shape oscillation frequency;
this is due to surfactants which can lower the surface tension down to 1/3 of the
surface tension in ultra clean water. For every experiment in tap water it is not
precisely know what the amount of surfactants is on the bubble surface;this leads
to differences in aspect ratio, bubble velocity and oscillation frequencies(see also
chapter 6). Generally, the aspect ratio of the bubble is lower in tap water; therefore
the critical bubble diameter above which shape oscillations are triggered increases.
In many cases the most important frequency is twice the path frequency (approxi-
mately 6.5 Hz). The mode (2,0) shape oscillations is still detected, but the coupling
between the axisymmetric mode (2,0) and the oscillations in the velocity of the
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Figure 8.8:Figures (a) and (b) show the measured frequencies versus bubble diameter: *
the wake, o the velocity,· the shape oscillations mode (2,0), and + mode (2,2). Figure (a)
for purified water, and figure (b) for tap water. Figure (c) gives the frequency of accel-
eration, shape oscillations (mode (2,0) and mode (2,2)), and wake versus the equivalent
radius. The lines resemble the model in (8.1). Figure (c) is taken from Lunde & Perkins
[11], with permission of R.J. Perkins and Springer Science.
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Figure 8.9:Schlieren images of a 3 mm (figure (a)) and a 3.5 mm (figure (b)) zigzagging
bubble rising in tap water. Clearly visible are the periodicbursts of vorticity at the outer
positions of the zigzagging motion. In between the bursts a stable double-threaded vortex
structure is present. The elapsed time starting from the moment the bubble appears in the
images is indicated in the upper left corner.

bubble is no longer present. At first this might look odd, because the idea was that
axisymmetric shape oscillations change added mass and drag and thereforebubble
velocity. But surfactants in the tap water change the boundary condition onthe
bubble surface from no-shear to no-slip which results in a larger drag.Whereas in
the no-shear case the added mass is dominant, in the no-slip case the drag is domi-
nant. Therefore shape oscillations no longer trigger oscillations in bubble velocity
in tap water. This might also explain the low vortex shedding frequency found by
Lunde & Perkins, which is based on experiments in contaminated water. The vor-
tex shedding is coupled with the oscillations in the velocity and is therefore only
twice the path frequency. Figure 8.9 gives an example of a zigzagging bubble in tap
water; the vortex shedding is periodic in bursts at the outer position of the zigzag,
and therefore it is equal to twice the path frequency. This vortex structure is clearly
different from the vortex structures of bubbles rising in purified water.So, again,
we see that the vortex shedding frequency is uncoupled from the shapeoscillation
and there is only a coupling between vortex shedding and oscillations in the veloc-
ity. In the case of free-shear surfaces shape oscillations trigger oscillations in the
velocity and therefore the vortex shedding frequency is also affected.

Shape oscillation frequency versus bubble aspect ratio
Figure 8.10 shows the experimental data for the frequency of the shape oscillations
versus the aspect ratio of the bubble. Figure 8.10(a) shows the data for bubbles
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rising in purified water and figure 8.10(b) for tap water, where the bubble aspect
ratio is smaller, because of surfactants.

Meiron [13] performed a numerical simulation based on potential flow to cal-
culate the eigenmodes of an oscillating ellipsoidal bubble. Actually, the paper was
a reaction on an earlier paper from Hartunian & Sears [5] who claimed thatshape
oscillations on a flattened spheroid would lead to instability of the bubble path.
Their linear stability analysis showed unstable eigenmodes of the spherical base
shape. Meiron repeated their calculation but he performed a stability analysis per-
turbing a bubble with ellipsoidal base shape. He found no unstable eigenmodes
and concluded that inviscid theory does not provide a mechanism for pathinsta-
bility. His research also led to a relation for the dependence of the frequency of
a mode on the aspect ratio of the base shape; mode (2,0) and (2,2) are presented
in figure 8.10 (’o-.-o’- and ’o—o’-line, respectively). The experiments show fre-
quencies which are lower than Meiron’s prediction. This might be caused by the
assumption of an oblate ellipsoidal bubble in both Meiron’s calculations and the
analysis of the experiments. In the experiments the bubbles do not have a for-aft
symmetry; the bubble is slightly flatter at the front. Therefore, by assuming an
oblate ellipsoidal shape, the aspect ratio is slightly underestimated, leading to a
lower frequency compared with Meiron’s calculations. But still after a smallshift
of the experimental data towards a higher aspect ratio (15% being the maximum
error in the aspect ratio) the difference with Meiron’s results remains. Probably
the remaining difference is due to effects of viscosity which are not account for by
Meiron. Lunde & Perkins’s expressions from (8.1) are also plotted in figure 8.10.
For mode (2,0) the agreement with the experiments is much better. For mode (2,2)
Lunde & Perkins’ model agrees well with both the experimental data and Meiron’s
results.

Notice that the large scatter in the non-dimensionalized frequency for bubbles
rising in tap water is again due to surfactants; now the surface tension is taken equal
for all experiments. If the surface tension is known for every individual experiment
the scatter would be much less.

We see that the rather simple model of Lunde & Perkins is in better agreement
with experimental data than the extensive numerical calculation of Meiron. Inor-
der to better understand the difference we will focus on the calculation of shape
oscillation frequencies of ellipsoidal bubbles. In the next section the well-known
calculation of the shape oscillation frequency of a spherical bubble will bedis-
cussed. Following a similar approach the shape oscillation frequencies of an oblate
ellipsoidal bubble will be calculated and compared with Meiron’s results.



8.2. EXPERIMENTAL RESULTS 151

(a)

1 1.5 2 2.5 3
0

2

4

χ

f/(
σ/

ρ 
r eq3

)

(b)

1 1.5 2 2.5 3
0

2

4

χ

f/(
σ/

ρ 
r eq3

)

Figure 8.10:The non-dimensionalized frequency, withf in rad s−1 for the shape os-
cillations versus the aspect ratio of the bubble:· experimental values for mode (2,0), +
experimental values for mode (2,2), o-·-o Meiron’s mode (2,0), o—o Meiron’s mode (2,2),
-·- Lunde & Perkins’s mode (2,0), and – Lunde & Perkins’s mode (2,2) taken from (8.1).
Figure (a) for purified water and figure (b) for tap water.
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8.3 Calculating shape oscillations

The calculation of shape oscillations of a spherical bubble in an inviscid liquidun-
der the action of capillary forces has been the subject of many papers. Rayleigh
[16] originally analyzed the oscillations of spherical droplets in a gas. Buta sim-
ilar approach can be used for a spherical gas bubble in a liquid. In his approach
he calculates the surface energy and the kinetic energy in the system in spherical
coordinates (r, θ, φ). Substituting these energies in Lagrange’s equation provides
the equations of motion. For oscillations of the form

exp i(nθ +mφ) exp iωn,mt,

the eigenfrequencies of the system are

ω2
n,m = (n+ 1)(n− 1)(n+ 2)

σ

ρa3
. (8.3)

Hereσ is the surface tension coefficient,ρ is the density of the liquid,a is the
radius of the undisturbed bubble, andn andm are the modes of the oscillation.
There is no difference between the frequency of the axisymmetric mode (n, 0) (n =
1, 2, ...) and the non-axisymmetric mode (n,m) (n = 1, 2, ... andm = 1, 2, ...) for
a spherical bubble. This equation is valid when the density of the surrounding
fluid is much larger than the density inside the bubble. Lamb [7] had a different
approach; he used the dynamic boundary condition to close the system andfound
the same result as Rayleigh.

More recent studies [2, 4, 9, 13, 18] repeated these calculations with different
approaches, leading to identical expressions for the frequency of shape oscilla-
tions of a spherical bubble. These calculations are all based on spherical bubbles.
So, with respect to rising bubbles, these equations will only hold for small Weber
numbers. For higher Weber numbers one should have an ellipsoidal baseshape
in order to treat the oscillations as sufficiently small, so that linearized theory can
be used. To the authors’ knowledge the calculation of shape oscillations onel-
lipsoidal shaped bubbles was only carried out by Meiron [13]. He useda similar
method as Lamb, but now for a base shape which is consistent with the Weber
number. He was not able to analytically calculate the equivalent of (8.3) foran el-
lipsoidal bubble, but calculated it numerically. Figure 8.10 shows the dependence
of the non-dimensional frequency on the aspect ratio of the bubble for mode 2 os-
cillations. At an aspect ratio of one the frequencies are equal to the frequencies on
a spherical bubble. The overall tendency is a decreasing frequencyfor increasing
aspect ratio.
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The aim of this section is to derive the analogue of (8.3) for the case of an ellip-
soidal bubble. Before we start with the ellipsoidal bubble, let us study the eigenfre-
quencies for a spherical bubble. The method of Rayleigh will be used to calculate
the surface and kinetic energy of the system.

8.3.1 Shape oscillations on a spherical bubble

The velocity potentialΦ of the irrotational fluid motion outside the gas bubble
satisfies Laplace’s equation; in spherical polar co-ordinates(r, θ, ϕ),

1

r2
∂

∂r

(

r2
∂Φ

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂Φ

∂θ

)

+
1

r2 sin2 θ

∂2Φ

∂ϕ2
= 0. (8.4)

A solution associated with standing waves on the fluid-gas interface is

Φ(r, θ, ϕ, t) =
∞
∑

n=0

r−(n+1)

(

n
∑

m=0

cnm(t)Pm
n (cos θ) cosmϕ +

n
∑

m=1

dnm(t)Pm
n (cos θ) sinmϕ

)

. (8.5)

HerePm
n (cos θ) denotes the associated Legendre function (e.g. Abramowitz &

Stegun [1]) andcnm(t) anddnm(t) are shape modes of the potential. The velocity
potential must satisfy the kinematic condition that at the bubble surface the normal
component of the fluid velocity equals the normal velocity of the bubble surface.
Write the equation for the bubble surface as

r = R(θ, ϕ, t),

then this condition becomes

∂R

∂t
+

(

1

r

∂Φ

∂θ

) (

1

r

∂R

∂θ

)

+

(

1

r sin θ

∂Φ

∂ϕ

) (

1

r sin θ

∂R

∂ϕ

)

=
∂Φ

∂r
, (8.6)

to be satisfied atr = R(θ, ϕ, t).
In order to linearize the boundary condition assume that

R(θ, ϕ, t) = a+ ζ(θ, ϕ, t),

whereζ is small. On using that the disturbance potential must also be small, the
kinematic condition becomes

∂ζ

∂t
=
∂Φ

∂r
, (8.7)
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to be satisfied atr = a.
At this point Lamb [7] introduces the linearized dynamic boundary condition.

Therefore it is necessary to calculate the curvature of the bubble to firstorder.
Rayleigh’s approach uses the surface energy and kinetic energy. The advantage is
that the curvature of the bubble does not have to be calculated, but the disadvantage
is that the kinetic energy is of second order in the disturbance potential. Hence, the
surface energy should also be calculated to second order. Here caremust be taken
because the oscillations cause a second order contribution to the volume of the
bubble, which has to be accounted for in the surface energy.

The instantaneous volume of the bubble is given by

V = 1
3

∫ 2π

0

∫ π

0
R3 sin θ dθdϕ = 1

3

∫ 2π

0

∫ π

0
[a0 + ζ]3 sin θ dθdϕ, (8.8)

where the ‘time-dependent radius’a0(t) and the ‘undisturbed radius’a can be dif-
ferent. Linearizing the bubble volume gives

V = 4
3πa

3
0

[

1 + 3ζ/a0 + 3ζ2/a2
0

]

, (8.9)

with

ζ =
1

4π

∫ 2π

0

∫ π

0
ζ sin θdθdϕ and ζ2 =

1

4π

∫ 2π

0

∫ π

0
ζ2 sin θdθdϕ.

Let the disturbance of the radiusζ be

ζ(θ, ϕ, t) =

∞
∑

n=2

{

n
∑

m=0

anm(t)Pm
n (cos θ) cosmϕ

+
n
∑

m=1

bnm(t)Pm
n (cos θ) sinmϕ

}

, (8.10)

whereanm(t) andbnm(t) are surface modes. From the orthogonality properties of
spherical harmonic functions (e.g. Lamb [7]) it follows that

ζ = 0 and ζ2 =
∑

n

∑

m

(

a2
nm + b2nm

) 1

2n+ 1

(n+m)!

(n−m)!
. (8.11)

There is no first order contribution to the volume. We are interested in the sur-
face energy due to shape oscillations and not due to changes in volume. Avoiding a
mean source term in the velocity potential requires a small correction to the ‘undis-
turbed radius’ of ‘second order’

a0(t) = a
[

1 − ζ2/a2
]

, (8.12)
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where the radiusa is related toV (t) = 4
3πa

3. This correction needs to be taken
into account when calculating the surface energy. The instantaneous area of the
surface of the bubbles is given by

S =

∫ 2π

0

∫ π

0

√

1 +

(

1

R

∂R

∂θ

)2

+

(

1

R sin θ

∂R

∂ϕ

)2

R2 sin θ dθdϕ. (8.13)

Hence, the linearized surface energy is

S = 4πa2
0

[

1 + ζ2/a2
0

]

+ 2π

[

(

∂ζ

∂θ

)2

+

(

1

sin θ

∂ζ

∂ϕ

)2
]

= 4πa2
[

1 + 1
2(n− 1)(n+ 2)ζ2/a2

]

(8.14)

from which the excess surface energy associated with the oscillations is found to
be

σ
(

S − 4πa2
)

= 2πa2(n− 1)(n+ 2)σ

∑

n

∑

m

a2
nm + b2nm

a2

1

2n+ 1

(n+m)!

(n−m)!
. (8.15)

The kinetic energy of the fluid can be calculated from the expression

T = −1
2ρ

∫

Φ∇Φ · n dS. (8.16)

The linearized kinetic energy is

T = −1
2ρ a

2

∫ 2π

0

∫ π

0

{

Φ
∂Φ

∂r

}

r=a

sin θ dθdϕ

= 2π
n+ 1

a2n−1

∑

n

∑

m

c2nm + d2
nm

a2

1

2n+ 1

(n+m)!

(n−m)!
. (8.17)

Substituting the expression for the velocity potential (8.5) and the expression for
the disturbance of the radius (8.10) into the kinematic condition (8.7) requiresthat

cnm = − an+2

n+ 1

danm

dt
and dnm = − an+2

n+ 1

dbnm

dt
. (8.18)

Finally, consider theanm andbnm as independent generalized coordinates, we can
substitute the expressions (8.15) and (8.17) in Lagrange’s equation. For general-
ized coordinateanm this is

d

dt

∂L

∂ȧnm
− ∂L

∂anm
= 0, (8.19)
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with
L = T − σ

(

S − 4πa2
)

,

andȧ representing the time derivative ofa. The ‘equation of motion’ for a typical
‘coordinate’anm then becomes

d2anm

dt2
− (n+ 1)(n− 1)(n+ 2)

γ

ρ a3
anm = 0, (8.20)

by which the eigenfrequency from (8.3) is recovered.

8.3.2 Shape oscillations on an ellipsoidal bubble

Now we follow an identical approach for the shape oscillations of an ellipsoidal
bubble. First look at the surface energy and kinetic energy to second order, then
calculate the second order contribution to the volume of the bubble.

Appendix B in chapter 7 provides general information on the flow around
oblate spheroids in an ellipsoidal coordinate system. Let the bubble surface in
an ellipsoidal coordinate system be specified by

µ = µ(θ, ϕ, t),

whereµ is the variable perpendicular to the surface of the ellipsoid,θ the vari-
able tangent to the surface andϕ the angle around the symmetry axis. Surfaces
µ = constant form a family of oblate spheroids.

The kinematic boundary condition becomes

∂µ

∂t
+

1

k2(sinh2 µ+ cos2 θ)

∂Φ

∂θ

∂µ

∂θ
(8.21)

+
1

k2 cosh2 µ sin2 θ

∂Φ

∂ϕ

∂µ

∂ϕ
=

1

k2(sinh2 µ+ cos2 θ)

∂Φ

∂µ
,

to be satisfied onµ = µ(θ, ϕ, t). Suppose that without the shape oscillations the
bubble has an oblate spheroidal shapeµ = µ0; the corresponding ratio of axes is
χ = cothµ0. Let the perturbed surface of the bubble be given by

µ(θ, ϕ, t) = µ0 + ζ(θ, ϕ, t),

whereζ is small. Linearizing the kinematic boundary condition one obtains

∂ζ

∂t
− 1

k2(sinh2 µ0 + cos2 θ)

∂Φ′

∂µ
=

1

k2(sinh2 µ0 + cos2 θ)

(

∂2Φ0

∂µ2
ζ − ∂Φ0

∂θ

∂ζ

∂θ

)

, (8.22)
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to be satisfied onµ = µ0; here we have set

Φ(µ, θ, ϕ, t) = Φ0(µ, θ) + Φ′(µ, θ, ϕ, t), (8.23)

whereΦ0 denotes the undisturbed velocity potential andΦ′ a small disturbance to
it.

The undisturbed velocity potentialΦ0 forces the bubble to have an oblate el-
lipsoidal shape. We now setΦ0 = 0 and retain the oblate ellipsoidal shape by
assuming a certain aspect ratio. With a constant surface tension a sphereis the
only equilibrium shape in a quiescent liquid. A variable surface tension along the
surface can make an ellipsoidal shape an equilibrium one. This implies that the
surface tension has to change with the angleθ, which will be discussed later on.
The linearized kinematic boundary condition now reduces to

∂ζ

∂t
− 1

k2(sinh2 µ0 + cos2 θ)

∂Φ′

∂µ
= 0. (8.24)

If the flow potential takes the form

Φ′(µ, θ, ϕ, t) =
∞
∑

n=0

n
∑

m=0

cnmQ
m
n (sinhµ)Pm

n (cos θ) cosmϕ (8.25)

this corresponds to

ζ(θ, ϕ, t) =
∞
∑

n=2

n
∑

m=0

anm

k2(sinh2 µ0 + cos2 θ)
Pm

n (cos θ) cosmϕ (8.26)

with

cnm =
1

{dQm
n /dµ}µ0

danm

dt
.

The shape oscillation frequency will be calculated for the axisymmetric modes
only. Hencem = 0 and theϕ-dependence vanishes.

Surface energy

Following the notation given in Kuipers & Timman [6] the surface area is

S =

∫ 2π

0

∫ π

0

√

EG− F 2 dθdϕ. (8.27)

Expressions for E, G, and F are given in appendix C of chapter 7. Forour oblate
ellipsoidal bubble this reduces to:

S = 2π

∫ π

0

√
EGdθ = 2π

∫ 1

−1
b
√
Edcos θ, (8.28)
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with

E = b2 cos2 θ + c2 sin2 θ + 2 (bbθ − ccθ) sin θ cos θ + b2θ sin2 θ + c2θ cos2 θ.

and
b = k coshµ,
c = k sinhµ.

Appendix A gives the detailed calculation of the surface to second order.The
surface energy is

σS = 2πσk2

∫ 1

−1

[

coshµ0

(

sinh2 µ0 + cos2 θ
)1/2

]

+

[

(

sinh2 µ0 + cos2 θ
)

−1/2
cosh2 µ0 sinhµ0ζ+

sinhµ0

(

sinh2 µ0 + cos2 θ
)1/2

ζ
]

+
[

1

2

(

sinh2 µ0 + cos2 θ
)

−1/2
coshµ0

(

sinh2 µ0 + cosh2 µ0

)

ζ2 +

1

2

(

sinh2 µ0 + cos2 θ
)1/2

coshµ0ζ
2
θ −

1

2

(

sinh2 µ0 + cos2 θ
)

−3/2
cosh3 µ0 sinh2 µ0ζ

2 +

(

sinh2 µ0 + cos2 θ
)

−1/2
coshµ0 sinh2 µ0ζ

2+

1

2

(

sinh2 µ0 + cos2 θ
)1/2

coshµ0ζ
2

]

dcos θ. (8.29)

Here the first term between brackets ([..]) is the zeroth order, the second term the
first order, and the third term the second order contribution to the surface energy.

The excess surface energy is the second order contribution to the surface en-
ergy. In the spherical case the first order contribution to the surface energy van-
ishes; later in this section we will see this is also the case for the ellipsoidal bubble
if we allow for a variable surface tension over the bubble surface.

Kinetic energy

The kinetic energy of the fluid is

T = −1

2
ρ

∫

V
|∇Φ|2 dV = −ρπk coshµ0

∫ 1

−1
ΦΦµdcos θ. (8.30)
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Using the expression for the kinematic boundary condition (8.24) and the flow
potentialΦ′ (8.25) the kinetic energy is

T = −ρπk coshµ0

∫ 1

−1

∑

n

[

dan

dt
QnPn

/

dQn

dµ

]

∑

n

[

dan

dt
Pn

]

dcos θ. (8.31)

Using the orthogonality conditions for the Legendre polynomials the kinetic energy
for every mode can be written as

T = −ρπk coshµ0Qn

(

dQn

dµ

)

−1 2

2n+ 1

(

dan

dt

)2

. (8.32)

Volume of an ellipsoidal bubble

The volume of an oblate ellipsoidal bubble is:

V =

∫ µ

0

∫ π

0

∫ 2π

0
hµhθhϕdµdθdϕ =

2πk3

∫ 1

−1

(

1

3
sinh3 µ+ cos2 θ sinhµ

)

dcos θ. (8.33)

To second order the volume is

V = 2πk3

∫ 1

−1

(

1

3
sinh3 µ0 + cos2 θ sinhµ0

)

+ (8.34)

coshµ0

(

sinh2 µ0 + cos2 θ
)

ζ +
(

1

2
sinh3 µ0 + sinhµ0 cosh2 µ0 +

1

2
cos2 θ sinhµ0

)

ζ2dcos θ.

The second order volume correction to the surface energy can be calculated using
several approaches which are used in the spherical case. Two will bediscussed
here: firstly the idea of Rayleigh [16] will be followed; this approach was also
discussed earlier in this section. Secondly, the approach of Benjamin [2] will be
discussed.

Volume correction according to Rayleigh
Considering the expression for the perturbationζ (8.26), now the first order contri-
bution to the volume is zero. Hence the volume is

V =
4

3
πk3 sinhµ0 cosh2 µ0 + (8.35)

2πk3

∫ 1

−1

(

1

2
sinhµ0

(

sinh2 µ0 + cos2 θ
)

+ sinhµ0 cosh2 µ0

)

ζ2dcos θ.
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We now define an effectivẽk by V = 4
3πk̃

3 sinhµ0 cosh2 µ0. Herek and the
’undisturbed’ k̃ can be different. Avoiding a mean source term in the velocity
potential requires a small correction to the undisturbedk̃ of second order

k = k̃ − 1

2

k̃

sinhµ0 cosh2 µ0

(8.36)

∫ 1

−1

(

1

2
sinhµ0

(

sinh2 µ0 + cos2 θ
)

+ sinhµ0 cosh2 µ0

)

ζ2dcos θ.

The surface energy scales withk2. Therefore we write

k2 = k̃2 − k̃2

sinhµ0 cosh2 µ0

(8.37)

∫ 1

−1

(

1

2
sinhµ0

(

sinh2 µ0 + cos2 θ
)

+ sinhµ0 cosh2 µ0

)

ζ2dcos θ.

The volume correction to the surface energy (σSRay) consists of the second order
contribution tok2 and the zeroth order surface energy contribution (see (8.29)), i.e.

σSRay = 2πσ
k̃2

sinhµ0 cosh2 µ0
∫ 1

−1

(

1

2
sinhµ0

(

sinh2 µ0 + cos2 θ
)

+ sinhµ0 cosh2 µ0

)

ζ2dcos θ

∫ 1

−1

(

coshµ0

(

sinh2 µ0 + cos2 θ
)1/2

)

dcos θ. (8.38)

Volume correction according to Benjamin
Benjamin [2] assumes a second order contribution to the spherical radius

R(θ, t) = a+ ζ(θ, t) + δ(t), δ(t) ∼ O(ǫ2). (8.39)

For the ellipsoidal case this would be

µ(θ, t) = µ0 + ζ(θ, t) + δ(t), δ(t) ∼ O(ǫ2). (8.40)

The volume to second order gives

V = 2πk3

∫ 1

−1

[(

1

3
sinh3 µ0 + cos2 θ sinhµ0

)

+ (8.41)

coshµ0

(

sinh2 µ0 + cos2 θ
)

δ +
(

1

2
sinh3 µ0 + sinhµ0 cosh2 µ0 +

1

2
cos2 θ sinhµ0

)

ζ2

]

dcos θ.
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Notice there is an extra second order contribution due toδ. For the volume to be
constantδ must statisfy

δ = −
∫ 1

−1

(

1

2
sinh3 µ0 + sinhµ0 cosh2 µ0 +

1

2
cos2 θ sinhµ0

)

ζ2d cos θ

[
∫ 1

−1
coshµ0

(

sinh2 µ0 + cos2 θ
)

dcos θ

]−1

. (8.42)

Now the extra second order contribution to the surface energy (σSBen) to account
for a constant volume is

σSBen = 2πσk2δ

∫ 1

−1

[

(

sinh2 µ0 + cos2 θ
)

−1/2
cosh2 µ0 sinhµ0+

sinhµ0

(

sinh2 µ0 + cos2 θ
)1/2

]

dcos θ. (8.43)

So, for the volume correction one can choose between (8.38) and (8.43).

Variable surface tension

We assumedΦ0 = 0 and an oblate ellipsoidal shape. Because there is no flow
around the bubble the pressure is equal outside the bubble; this would imply a
spherical bubble. We adjust the surface tension according to the curvature of the
ellipsoid in order to match the equal pressure difference along the surface.

We know
σ∇ · n = ∆P, (8.44)

for a spherical bubble this becomes

σ0
2

aeq
= ∆P, (8.45)

with aeq the equivalent radius. Hence, for constant pressure difference,the surface
tension for an ellipsoidal bubble is

σ(θ) =
2σ0

aeq∇ · n . (8.46)

Using appendix C in chapter 7 this becomes

σ(θ) = σ0

[

2

√

χ2 − 1

χ2/3

(

sinh2 µ0 + cos2 θ
)3/2

sinhµ0 coshµ0 + sinh µ0

cosh µ0

(

sinh2 µ0 + cos2 θ
)

]

. (8.47)

Using this expression the first order contribution to the surface energy (8.29) be-
comes zero.



162 CHAPTER 8. MOTION OF BUBBLES WITH SHAPE OSCILLATIONS

1 1.5 2 2.5 3
0

5

10

χ

ω
n/(

σ/
ρ 

r eq3
)

Figure 8.11: The non-dimensional frequency for the shape oscillations of mode (2,0)
versus the aspect ratio of the bubble. – the result using (8.38) for the volume correction,·-·
the result using (8.43) for the volume correction, and o–o Meiron’s result.

Shape oscillation frequency

Averaged over an oscillation period the surface energy and kinetic energy are equal.
The second order part of the surface energy can be taken from (8.29). An extra
second order surface contribution follows from the volume correction in (8.38) or
(8.43). The kinetic energy, which is already of second order, is givenin (8.32). The
oscillation frequency follows from

ω2
n =

〈σS〉
〈T 〉 . (8.48)

For every mode the energies can be calculated separately as a function ofthe aspect
ratio of the undisturbed oblate ellipsoidal bubble. Figure 8.11 shows the axisym-
metric shape oscillations of mode 2 as a function of the aspect ratio. The spherical
case is correct, but for higher aspect ratio the results deviate for the calculation of
Meiron and experiments (see figure 8.10). What is also striking is the different
results using the volume correction following Rayleigh’s approach or Benjamin’s
approach. Both approaches have a similar positive slope atχ=1, but deviate at
larger aspect ratios.

To the authors’ knowledge Meiron’s results can only partially be verified with
an analytical approach of Feng [3], who studied the change of shape and volume
oscillation frequencies for a small deviation from the spherical shape. For a mode 2
shape oscillation he found the following relation

ω2 = ω2,sph

[

1 − 0.0658U2
]

U ≪ 1, (8.49)
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with ω2,sph the shape oscillation frequency of the spherical bubble andU the bub-
ble velocity. The frequencies decrease as the velocity around the bubble, and there-
fore the aspect ratio, increases. He explained this as follows:”The phenomenon
may be mainly caused by an overall reduction in the surface restoring force, be-
cause of the quiescent expansion of the bubble volume and reduction in the pres-
sure...” So, our calculation seems to be incorrect. This might be due to the as-
sumption to set the undisturbed potentialΦ0 to zero and vary the surface tension to
come to the correct ellipsoidal ground shape of the bubble. In further research we
might have to take into account contributions ofΦ0 to the surface energy, but this
complicates the calculations substantially.

The results of our calculation suggest that the surface energy is not calculated
correctly for aspect ratios larger than one. Therefore a hypotheticalcase is tested
where the kinetic energy is calculated according to (8.32) and the surfaceenergy
is set to the value of a spherical bubble. Hence it can be calculated from (8.15),
which has to be slightly changed because the disturbanceζ has the unit of meter in
the spherical calculation, whereas it has no unit in the ellipsoidal calculation. The
frequency resulting from this approach is

ω2
n =

〈σS〉
〈T 〉 =

σ

ρa3
eq

χ2/3

√

χ2 − 1

(n− 1)(n+ 2)

coshµ0

dQn

dµ
Q−1

n . (8.50)

Surprisingly this expression yields the same frequencies as the numerical calcu-
lations of Meiron forn = 1, 2, 3, ..... So, it seems that the second order surface
energy does not change for changing aspect ratio if we assume Meiron’s results to
be correct; this is remarkable and cannot be explained this at this moment.

The results of the calculations in this section give rise to many questions, but
also give new insight in the shape oscillations on ellipsoidal bubbles; it couldthere-
fore serve as a basis for further research.

The approach to take the average of the kinetic energy and the surface energy in or-
der to calculate oscillation frequencies can also be used to calculate volume oscilla-
tion frequencies. In appendix B an analytical expression for the volume oscillation
frequency of an oblate ellipsoidal bubble is derived using this approach.

8.4 Conclusion

The previous chapter dealt with bubbles of fixed ellipsoidal shape. In thepresent
chapter the bubble diameter is increased and shape oscillations set in. For bubble
sizes just after the onset of shape oscillations two modes are found: an axisym-
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metric mode (2,0) and a non-axisymmetric mode (2,2). For larger bubbles, besides
modes (2,0) and (2,2), more shape oscillation modes are detected.

The bubble motion is affected by the shape oscillations. The mode (2,0) is
linked with the bubble velocity. For bubble sizes right at the onset of shapeoscil-
lations, the stable spiraling motion changes into a pure zigzagging motion because
the mode (2,2) forces the bubble to rise in a zigzag when this mode is a multiple
of the path frequency. Larger bubbles rise in more or less spiraling paths, but now
with large variations in velocity. Finally, multiple oscillations force the bubble into
an erratic path.

Wake oscillations link with velocity oscillations and therefore the mode (2,0)
oscillations. Experiments in tap water reveal that shape oscillations remain the
same as in purified water, but velocity oscillations are no longer linked with shape
oscillations, they drop to twice the path frequency as do the wake oscillations.In
the previous chapter we observed wake instabilities behind bubbles withoutshape
oscillations. Thus wake oscillations are not coupled with shape oscillations; this
coupling is only through oscillations in the velocity.

The analytical method to calculate shape oscillations on spherical bubbles (e.g.
[2, 7]) is extended to shape oscillations on ellipsoidal bubbles by calculatingthe
surface and kinetic energies of an oscillating bubble. The limiting case for as-
pect ratio one is calculated correctly but the method results in deviations fromthe
numerical theory by Meiron [13] for higher aspect ratios. Surprisinglywhen the
second order surface energy is assumed to be equal to the value of the spherical
case for all aspect ratios our results are identical to those of Meiron. This is a
remarkable finding which should be investigated thoroughly in further research.

Appendix A: Surface of an oblate spheroid to second order

This appendix deals with the calculation of the surface of an oblate spheroidto sec-
ond order. The result can be used to calculate the surface energy in thecalculation
of the shape oscillation frequency of an oblate spheroid.

From appendix C in chapter 7 we know that the area of surface of an oblate
ellipsoidal bubble is

S = 2π

∫ π

0

√
EGdθ = 2π

∫ 1

−1
b
√
Edcos θ, (8.51)

with

E = b2 cos2 θ + c2 sin2 θ + 2(bbθ − ccθ) sin θ cos θ + b2θ sin2 θ + c2θ cos2 θ,
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and

b(θ, ϕ) = k coshµ(θ, ϕ), c(θ, ϕ) = k sinhµ(θ, ϕ).

In oblate ellipsoidal coordinates (µ, θ, ϕ) we assume the bubble surface to be given
by

µ(θ, ϕ, t) = µ0 + ζ(θ, ϕ, t),

whereζ is small. Now calculate the surface to second order inζ.

b = k cosh(µ+ ζ) = k coshµ0 + k sinhµ0ζ +
1

2
k coshµ0ζ

2,

c = k sinh(µ+ ǫζ) = k sinhµ0 + k coshµ0ζ +
1

2
k sinhµ0ζ

2,

bθ = k sinh(µ+ ǫζ)ζθ = k sinhµ0ζθ + k coshµ0ζζθ,

cθ = k cosh(µ+ ζ)ζθ = k coshµ0ζθ + k sinhµ0ζζθ,

bbθ = k2 coshµ0 sinhµ0ζθ + k2
(

sinh2 µ0 + cosh2 µ0

)

ζζθ,

ccθ = k2 coshµ0 sinhµ0ζθ + k2
(

sinh2 µ0 + cosh2 µ0

)

ζζθ,

bbθ − ccθ = 0,

b2 = k2 cosh2(µ+ ζ) = k2 cosh2 µ0 +

2k2 coshµ0 sinhµ0ζ + k2
(

sinh2 µ0 + cosh2 µ0

)

ζ2,

c2 = k2 sinh2(µ+ ζ) = k2 sinh2 µ0 +

2k2 coshµ0 sinhµ0ζ + k2
(

sinh2 µ0 + cosh2 µ0

)

ζ2,

b2θ = k2 sinh2 µ0ζ
2
θ ,

c2θ = k2 cosh2 µ0ζ
2
θ .

Hence,

E = b2 cos2 θ + c2 sin2 θ + b2θ sin2 θ + c2θ cos2 θ

= k2
[(

sinh2 µ0 + cos2 θ
)

+ 2 coshµ0 sinhµ0ζ +
{(

sinh2 µ0 + cosh2 µ0

)

ζ2 +
(

sinh2 µ0 + cos2 θ
)

ζ2
θ

}]

.

E1/2 = k

[

(

sinh2 µ0 + cos2 θ
)1/2

+
1

2

(

sinh2 µ0 + cos2 θ
)

−1/2

{

2 coshµ0 sinhµ0ζ +
(

sinh2 µ0 + cosh2 µ0

)

ζ2 +
(

sinh2 µ0 + cos2 θ
)

ζ2
θ

}

−
1

2

(

sinh2 µ0 + cos2 θ
)

−3/2
cosh2 µ0 sinh2 µ0ζ

2

]

.
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Now the area of surface to second order is

S = 2πk2

∫ 1

−1

[

coshµ0

(

sinh2 µ0 + cos2 θ
)1/2

]

+

[

(

sinh2 µ0 + cos2 θ
)

−1/2
cosh2 µ0 sinhµ0ζ+

sinhµ0

(

sinh2 µ0 + cos2 θ
)1/2

ζ
]
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1

2

(

sinh2 µ0 + cos2 θ
)

−1/2
coshµ0
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)

ζ2 +

1

2
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sinh2 µ0 + cos2 θ
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coshµ0ζ
2
θ −

1

2

(

sinh2 µ0 + cos2 θ
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−3/2
cosh3 µ0 sinh2 µ0ζ

2 +

(

sinh2 µ0 + cos2 θ
)

−1/2
coshµ0 sinh2 µ0ζ

2+

1

2

(

sinh2 µ0 + cos2 θ
)1/2

coshµ0ζ
2

]

dcos θ. (8.52)

Here the first term between brackets ([..]) is the zeroth order, the second term the
first order, and the third term the second order contribution to the surface.

Appendix B: Oblate spheroid with volume oscillations

For a spherical bubble the frequency of volume oscillation has been calculated by
Minnaert [15]. For the ellipsoidal bubble an expression for the frequency will be
calculated and compared with the results of Strasberg [19] . Therefore the reader is
referred to Milne-Thomson [14, p. 543, example 34], where the potentialis given
for an ellipsoid with volume oscillation

Φ = −1

6
abc

(

ȧ

a
+
ḃ

b
+
ċ

c

)

∫

∞

λ

dλ

[(a2 + λ)(b2 + λ)(c2 + λ)]1/2
. (8.53)

The relation betweenλ and the aspect ratioχ = a
b is

√

a2 + λ =
bχ

χ2 − 1
and

√

b2 + λ =
bχ2

χ2 − 1
. (8.54)

For an oblate ellipsoid the flow potential becomes

Φ = −1

6
a2b

(

2ȧ

a
+
ḃ

b

)

√

χ2 − 1

[

2 arctan sinhµ− π

bχ

]

. (8.55)
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Assume that the axis behave like

a = a0(1 + ǫ cos(ωt)),

b = b0(1 + ǫ cos(ωt)), (8.56)

with ǫ a small constant. The potential energy is

Epot = p∞(V − V0) −
∫ V

V0

pdV. (8.57)

The volume can be written as

V =
4

3
πa2

0b0(1 + ǫ cos(ωt))3. (8.58)

Hence,

V − V0 =
4

3
πa2

0b0
[

3ǫ cos(ωt) + 3ǫ2 cos2(ωt) + ǫ3 cos3(ωt)
]

. (8.59)

If we assume adiabatic behavior, we can say

pV γ = p∞V
γ
0 ⇒ p = p0

(

V0

V

)γ

, (8.60)

with γ is the ratio of the heat capacities. Hence,

−
∫ V

V0

pdV = −p∞V0

1 − γ

[

(

V0

V

)γ−1

− 1

]

(8.61)

= −p∞V0

[

3ǫ cos(ωt) +
3

2
(2 − 3γ)ǫ2 cos2(ωt) +O(ǫ3)

]

.

The potential energy now becomes

Epot =
9

2
p∞V0γǫ

2 cos2 ωt. (8.62)

The kinetic energy is

T = −1

2
ρ

∫

V
|∇Φ|2 dV = −ρπk coshµ0

∫ 1

−1
ΦΦµdcos θ. (8.63)

Substituting the flow potential from (8.55) in this equation yields

T =
ρπ

√

a2
0 − b20

{π − 2 arctan(sinh(µ0)} a4
0b

2
0ω

2 sin2(ωt)ǫ2. (8.64)
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Figure 8.12:The non-dimensionalized frequency of the volume oscillations as function
of the aspect ratio of the bubble. – Equation (8.65) and * datataken from Strasberg [19].

Taking the time averaged energies over an oscillation period and taking the poten-
tial energy to be equal to the kinetic energy the volume oscillation frequency as
function of the aspect ratio is

ω2 =

(

3
p∞γ

ρa2
eq

)

√

χ2 − 1

χ2/3

1

cot−1

(

1√
χ2

−1

) . (8.65)

The frequency is increasing with the aspect ratio. Figure 8.12 shows thatthis equa-
tion gives similar values for the volume oscillation frequency as Strasberg [19].
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Chapter 9

Conclusions and outlook

In chapter 1 several aspects on solid sphere and bubble motion were discussed
which continue to raise many questions in the research community. This thesis
addressed several of these aspects and answered some of the open research ques-
tions, which were related to the different motions, shapes and wake structures of
these bodies, the forces acting on these bodies and the interacting betweenpath,
wake and shape instabilities. This chapter will provide a general discussion of the
previous conclusions in each chapter and will focus on recommendations for future
research on sphere and bubble motion.

Chapter 3 focused on flow visualizations of the wake behind solid spheresmov-
ing under the action of gravity. This research revealed differences withthe wakes
behind spheres held fixed, studied by Schouveiler & Provansal [15] and Johnson
& Patel [7]. The wake behind some heavy falling spheres clearly shows hairpin
vortices shedding from the sphere surface, whereas the wake behindother falling
spheres and rising spheres is not dominated by vortex shedding. Thereis a con-
tinuous formation of vorticity into two vortex threads of opposite-signed vorticity.
These threads cross and kinks are formed on these threads that finally develop into
hairpin vortex like structures. Hence, with respect to the wake structure tobe devel-
oped, the sphere-fluid density ratio is important. The experiments presentedin this
thesis show that rising spheres are more susceptible to instabilities in the wake and
their path is influenced by these instabilities. For all spheres the double-threaded
wake structure seems to be a basic feature, even for large Reynolds numbers. Chap-
ter 5 investigated the effect of the density ratio on both sphere path and wake more
thoroughly.

In chapter 4 the proposal, given originally by Karamanev & Nikolov [9], tore-
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place the standard drag relation byCD(Re) = 0.95, for spheres with a density
ratio ρs/ρ < 0.3 andRe > 130, was examined. The experiments with spheres
for which ρs/ρ ≅ 0.02 showed a rather poor agreement with this proposal. This
is consistent with the view that it is more appropriate to replace the standard drag
curve by a series of curves parameterized by the value ofρs/ρ. Each of these
curves starting off from the standard drag curve at a higher Reynoldsnumber than
130, namely betweenRe = 205.8 andRe = 211.9. These values are directly re-
lated to the work of Dǔsek [6] who found that the onset of path instability for freely
moving spheres depends on the density ratio and occurs betweenRe = 205.8 and
Re = 211.9. For any individual case above these Reynolds numbers a substan-
tial difference may be found between the measured drag and the drag given by the
standard drag relation. This difference is largest for light spheres, because these
spheres do not rise along any preferred path once path oscillations setin. It was
proposed, and verified with experiments, that the drag force consists of(i) a viscous
contribution that may be estimated from the standard drag curve by evaluatingthe
Reynolds number using the actual value of the velocity, and (ii) an inertial contri-
bution that arises essentially by the same mechanisms that cause the lift-induced
drag on airplane wings.

The study on freely rising spheres is connected with work done on vortex-
induced vibrations, especially with studies of the motion of elastically mounted
and tethered spheres. The description of the origin of the lift force on such spheres
in Govardhan & Williamson [4] is essentially similar to the one presented in this
thesis. It would be interesting to combine their DPIV measurements of the sphere
wakes with the simple model of the drag force. It may even be possible to estimate
the vortex-flow forces experienced by the spheres on using the expressions derived
by Kambe [8] and Howe [5].

In chapter 5 the numerical work of Dušek and co-workers [6] was verified. Their
work is the first to give a detailed analysis of the instabilities and transitions in
the motion of spheres moving freely under the action of gravity. The observations
made in this thesis agree very well with their description of the quite distinct fea-
tures of sphere motion in different regimes of the(G, ρs/ρ) parameter space.

The Schlieren flow visualizations did not recover the finding of Dušeket al.
on the absence of a bifid wake behind the spheres after the path instability has
set in. In all the pictures the wake consists, entirely or in part, of two counter-
rotating vortices as can also be seen in earlier studies on the wake structures of
freely moving spheres in chapter 3.

Dušeket al. [6] showed that the transient state for freely moving spheres can
be rather long; hence the Schlieren experiments presented in this thesis, carried
out in a small tank of 50 cm in height, might be carried out in this transient state.
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Therefore an enlargement of the water tank in the Schlieren setup is an important
issue for future research. Furthermore, the Schlieren technique limits the field of
view to the diameter of the largest lens, 10 cm. To capture low frequency wake
oscillations, as were found by Dušeket al., this field of view should be enlarged.

Chapters 3 to 5 clearly show the importance of the sphere and fluid properties when
looking at sphere motion. The study of Dušeket al. and the present experimental
verification make clear that the motion of spheres can be completely differentde-
pending on the value of the parameters sphere-fluid density ratioρs/ρ and Galileo
numberG. This will also have its effect on the wake behind the sphere and the drag
experienced by it. The use of one ’standard’ drag curve for all spheres, which only
depends on the Reynolds number, is therefore incorrect. Future research should
provide drag curves parameterized byG andρs/ρ (orRe andG or ρs/ρ andRe)
to account for this difference in sphere motion.

Chapter 6 showed the general aspects of single bubble motion. The bubblepath
changes from a stable spiral into a pure zigzag when shape oscillations set in. The
bubbles reach rise velocities as high as measured by Duineveld [2]; this is also
reflected in the low drag coefficients. This justifies the statement that the experi-
ments were carried out in ultra clean water. It is shown that the minimum radius of
curvature of the bubble shape is a better measure for the rise velocity of thebubble
than the bubble aspect ratio, as was put forward by Duineveld.

Chapter 7 focussed on bubbles that rise without shape oscillations. The bubbles
rise with their minor axis aligned with the path, as was also observed by Ellingsen
& Risso [3]. Right after the onset of path instability the bubbles rise in a pure
spiral, whereas for somewhat larger bubbles the path becomes flattened and the
motion becomes unsteady.

For the purely spiraling bubbles the lift force in normal and bi-normal direc-
tion are equal; a feature which has not been reported before in an experimental
study. Only numerical work by Mougin & Magnaudet [14] shows identicalresults.
Analysis of the orientation of the vortex plane behind a spiraling bubble confirms
this equality of lift in normal and bi-normal direction. Implementing this feature
into the equations of motion for a purely spiraling bubble yields a simple relation
between the characteristics of the spiral and the shape of the bubble; this shows
that only a limited number of combinations of spiral frequency, pitch, and radius is
possible.

Analysis of the vorticity structure behind spiraling bubbles reveals that the
wake consists of two counter-rotating vortex threads, which account for the lift
necessary to curve the bubble path. Analysis of the strength of these threads en-
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ables us to estimate the lift force; the estimate is in good agreement with the ex-
periments. Furthermore it is shown that the measured drag can be modelled witha
contribution related to viscous drag and a contribution induced by the lift force, the
lift-induced drag, which is induced instantaneously. This model for drag issimilar
to the case of spheres moving through a liquid, as discussed in chapter 4.

In chapter 8 the bubble diameter is increased and shape oscillations set in. For
bubble sizes just after the onset of shape oscillations two shape oscillation modes
are found: an axisymmetric mode (2,0) and a non-axisymmetric mode (2,2), as was
also found by Lunde & Perkins [11]. For larger bubbles, besides frequencies for
modes (2,0) and (2,2), more frequencies are detected. These frequencies cannot be
linked with higher modes and are probably due to non-linear effects.

The bubble motion is affected by shape oscillations; the frequency of mode (2,0)
is linked with the frequency of bubble velocity oscillations. For bubble sizes right
at the onset of shape oscillations the stable spiraling motion changes into a purely
zigzagging motion, because the mode (2,2) forces the bubble to rise in a zigzag
when this mode is a multiple of the path frequency. Larger bubbles rise in more
or less spiraling paths, but now with large variations in velocity. Finally multiple
oscillations force the bubble into an erratic path.

Wake oscillations link with velocity oscillations and therefore the mode (2,0)
oscillations. Experiments in tap water reveal that shape oscillations remain the
same as in purified water, but velocity oscillations are no longer linked with shape
oscillations, they drop to twice the path frequency as do the wake oscillations.
In chapter 7 it is observed that wake instabilities can be present behind bubbles
without shape oscillations; hence, the wake oscillations are not coupled withshape
oscillations, this coupling is only through oscillations in the velocity.

It would be interesting to study the forces and torques acting on bubbles per-
forming shape oscillations. It is possible to reconstruct the 3D bubble shape, ori-
entation and path from two perpendicular views on the bubble if the bubble is an
oblate ellipsoid. But when shape oscillations set in this reconstruction is no longer
valid. Hence, a third view on the bubble is necessary. Positioning a camera on top
of the water tank to capture the top view of the bubble would solve this problem.
Of course, bubbles moving in and out of focus of the top camera are now problems
which have to be solved.

To better understand the shape oscillations the analytical method to calculate
shape oscillations on spherical bubbles [e.g. 1, 10] was extended to shape oscil-
lations on ellipsoidal bubbles. The limiting case for aspect ratio one is calculated
correctly, but the method results in deviations from the results of numerical work
by Meiron [12] for higher aspect ratios. Future research should focus on a cor-
rect closure of the model, which should be compared with experimental results on
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shape oscillation frequencies. Further analysis of this comparison shouldprovide
a better understanding of the difference between our experimental results and the
theory of Meiron [12] as we saw in figure 8.10.

Recapitalizing all results, we see that there are remarkable agreements between the
motion of spheres and bubbles. Although the boundary conditions are different,
the effect of the generated vorticity at the surfaces of these bodies on their motion
is similar; in both cases we see wake structures consisting of two vortex threads.
And the drag experienced by these bodies moving at high Reynolds numbers can
both be modelled correctly with a viscous contribution and a contribution related
to lift. The orientation of the vortex plane (i.e. the angle between the vortex plane
and the horizontal plane) which is related to the lift induced drag varies between 21
and 24o for a bubble and between 25 and 38o for a sphere. Further research should
provide more information of the dependance of this angle on the sphere-fluid den-
sity ratio. Does an even lighter sphere give smaller vortex plane angles? Oris this
angle more dependent on the amount of vorticity produced at the surface? Related
to this is the relative contribution of the lift-induced drag to the total drag experi-
enced by the body. For a bubble the lift induced-drag is approximately 23-29 %
of the total drag. For a sphere this percentage is 21-26 %. These percentages are
more or less equal, but the vortex plane angle is larger for a sphere. A larger vortex
plane angle would imply a larger lift-induced drag. Why is the relative contribu-
tion of the lift-induced drag to the total drag in the case of a sphere not higher than
in the case of a bubble? The reason is the boundary condition, which is a no-slip
boundary condition for a sphere compared to a no-shear condition for abubble.
Therefore the relative contribution of the lift-induced drag to the total dragmight
be smaller. An important subject for further research would be to investigate the
dependence of the relative contribution of the lift-induced drag to the total drag on
the sphere-fluid density ratio and the boundary condition.

Besides the differences in boundary condition and density there is a difference
in shape. Therefore it would be interesting to study ellipsoidal particles. Some
experiments with flattened polystyrene spheres are carried out. These experiments
showed that the aspect ratio of the ellipsoidal particle cannot be fully controlled;
also the axisymmetry after the sphere is flattened might be lost. Figure 9.1 shows
the angleθ between the path of an ellipsoidal particle and the horizontal plane
and the angle between the minor axis of the particle and the horizontal plane for a
particle rising along a zigzag path through water. We clearly see that the particle is
not always aligned with its path; when the particle rises straight up the particleis
aligned with its path and both angles are 90o, but when the particle moves through
the symmetry axis of the zigzag path the particle ’overshoots’ the path. The angle
between the minor axis and the horizontal plane is larger than the angle of the path
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Figure 9.1:– Angle between the tangent and the horizontal plane, - - angle between the
minor axis and the horizontal plane for an ellipsoidal particle (ρs/ρ ≅ 0.02,Deq=5.9 mm,
andχ = 1.4.). Angles are given ino.

with the horizontal plane. Now the ellipsoidal particle is no longer aligned with its
path inertial forces perpendicular to the path of the particle are generated. This is,
because the added mass tensor no longer is a diagonal matrix.

All flattened spheres that were tested had a small non-axisymmetry of about
2-5%. This caused the particle always to move in a zigzag. Probably a spiral path
can be only be observed for perfectly axisymmetric ellipsoids. This is relatedto
the observed zigzag paths for bubbles with non-axisymmetric shape oscillations as
we saw in chapter 8.

It would be interesting to study the drag experienced by these ellipsoids. Before
one could test the drag model as it is presented in this thesis it is necessary tohave
an expression for the viscous contribution to the drag. For spheres the standard drag
curve is used and for bubbles Moore’s drag is used. In future research the viscous
drag could be measured using heavy ellipsoidal particles or ellipsoidal particles
held fixed. Finally a study of the wake structures behind ellipsoidal particleshas to
be conducted to provide information of the orientation of the vortex plane behind
the particle. In this research it is important to focus on the effect of the density
ratio; for small density ratios a comparison could be made with numerical work
of Mougin & Magnaudet [13] on ellipsoidal bubbles. Furthermore the work of
Duseket al. [6] could be extended to ellipsoidal particles.
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Summary

Bubble and particle laden flows are important in a wide range of industrial and
geophysical processes. This broad application field stimulated bubbly andparticle
laden flow research. In the upper limit research focuses on dense, highly laden
flows, which provides overall statistical properties of such flows. In thelower
limit the research addresses the problem of single bubble and particle behavior,
providing a more fundamental knowledge of the hydrodynamic forces acting on
bodies. This thesis focuses on both single solid particle and bubble behavior.

Chapter 2 discusses the experimental Schlieren setup which is used to visualize
wake structures behind rising and falling spheres and rising bubbles in quiescent
water. The advantage of the Schlieren technique compared to other flow visual-
ization techniques, like PIV and dye-injection, is the ability to visualize the entire
3D flow field without contaminating the water. The last being important for the
visualization of wake structures behind bubbles rising in purified water.

Chapter 3 shows that the wake structures behind solid spheres rising or falling
freely in liquids under the action of gravity show remarkable differences tothe
wake structures observed behind spheres held fixed. The wake behind some falling
spheres consists of hairpin vortices shedding from the sphere surface. The wake
behind other falling spheres and behind rising spheres are not dominatedby vortex
shedding, but consist of two continuous vortex threads of opposite-signed vorticity.
These threads cross and kinks are formed on these threads, that finallydevelop into
hairpin vortex like structures. Furthermore, the double-threaded wake structure
seems to be a basic feature, even for large Reynolds numbers.

Related to these differences in sphere dynamics is the research of Karamanev
and co-workers (Karamanev and Nikolov 1992; Karamanev, Chavarie& Mayer
1996; Karamanev 2001) on the behavior of spheres rising freely in a Newtonian
fluid with a sphere-fluid density ratio less than 0.3. They propose to replace, for
these spheres, the standard relation for the drag coefficientCD as a function of the
Reynolds numberRe by CD = 0.95 for Re > 130. In chapter 4 it is shown that
this is not supported by our experiments. It is shown, that the drag forceconsists
of (i) a viscous contribution that may be estimated from the standard drag curve by
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evaluating the Reynolds number using the actual value of the velocity, and (ii)an
inertial contribution that arises essentially by the same mechanisms that cause the
lift-induced drag on airplane wings.

The two parameters controlling the rise or fall velocity are the sphere-fluid den-
sity ratioρs/ρ and the Galileo numberG. Jenny, Dǔsek & Bouchet (2003) studied
the instability and the transition of the motion of solid spheres in this(G, ρs/ρ)
parameter space numerically. They showed that the parameter space may bedi-
vided into regions with distinct features of the sphere trajectories; furthermore an
asymmetry around a density ratio of one is found. In chapter 5 an experimental
investigation is presented in which the interesting conclusions of their study are
verified. The experiments agree well with what was observed in their numerical
study. However, our flow visualizations of the wakes of the spheres always show a
double-threaded wake. This contradicts the conclusion of Jenny, Dušek & Bouchet,
namely the absence of a bifid wake structure.

In chapter 6 the general features of single bubbles (1 ≤ deq ≤ 6mm), rising in
purified water, are studied. The smallest bubbles are oblate ellipsoids risingrecti-
linearly. Larger bubbles are oblate ellipsoids in spiraling motion. For even larger
bubbles shape oscillations set in, strongly influencing the bubble path. Compari-
son of the rise velocity and shape of the bubble with earlier research shows that the
used water is indeed pure, not contaminated with surfactants.

Chapter 7 focuses on oblate ellipsoidal bubbles that rise without shape oscilla-
tions. It is shown that the measured drag on the bubble consists of a contribution
related to viscous drag and a contribution related to the lift acting on the bubble,
which is induced instantaneously. It seems that variations in the viscous contribu-
tion to the drag associated with the ‘building-up’ of the vorticity field by diffusion
and convection, important at low Reynolds numbers, is negligible at high Reynolds
numbers. This is also the case for solid spheres.

Chapter 8 focuses on larger bubbles for which shape oscillations set in.For
bubble sizes right at the onset of shape oscillations the stable spiraling motion
changes into a pure zigzagging motion. This is due to a coupling with the non-
axi-symmetric mode (2,2) shape oscillation. Larger bubbles rise in more or less
helicoidal paths. Finally, multiple shape oscillations force the bubble into an erratic
path. All bubbles show an axi-symmetric mode (2,0) shape oscillation which is
coupled with velocity oscillations and therefore with oscillations in the wake.

An analytical method to calculate shape oscillations on ellipsoidal bubbles is
presented. The limiting case for aspect ratio one is calculated correctly butthe
method results in deviations from numerical theory by Meiron (1989) for higher
aspect ratios.



Samenvatting

Stromingen met bellen en deeltjes zijn belangrijk in vele industriële en geofysische
processen. Dit grote toepassingsgebied heeft het onderzoek naarstromingen met
bellen en deeltjes gestimuleerd. Aan de ene kant richt het onderzoek zichop de
stroming met een grote dichtheid van bellen of deeltjes. Dit geeft de statistische
eigenschappen van zulke stromingen. Aan de andere kant wordt er gekeken naar
het gedrag vańeén bel of deeltje. Dit geeft een fundamenteel inzicht in de hydro-
dynamische krachten, die werken op deze lichamen. Dit proefschrift richt zich op
het gedrag vańeén deeltje van vaste vorm oféén bel.

In hoofdstuk 2 wordt een experimentele Schlieren opstelling besproken,die
gebruikt is voor de visualisatie van vorticiteitsstructuren achter opstijgendeen val-
lende sferische deeltjes en opstijgende bellen in stilstaand water. Het voordeel
van de Schlieren techniek ten opzichte van andere stromingsvisualisatietechnieken,
zoals PIV en inkt-injectie, is, dat Schlieren het gehele 3D stromingsveld visu-
aliseert zonder het water te vervuilen. Dit is vooral van belang voor onderzoek
naar het gedrag van bellen in zuiver water.

Hoofdstuk 3 laat zien, dat de vorticiteitsstructuren achter sferische deeltjes van
vaste vorm (het zog), die opstijgen of vallen, opmerkelijke verschillen vertonen
met deeltjes, die vastgehouden worden. Het zog achter sommige vallende deeltjes
bestaat uit zogenaamde ’hairpin’ vortices, die afgeschud worden vanhet oppervlak
van het deeltje. Het zog achter andere vallende deeltjes en opstijgende deeltjes
bestaat uit twee continue vortexdraden van tegengestelde vorticiteit. Dezevortex-
draden kruizen, waarna lussen ontstaan, die uiteindelijk overgaan in structuren, die
lijken op ’hairpin’ vortices. Verder valt op, dat de dubbele vortexstructuur een stan-
daard eigenschap is voor het zog van deeltjes, zelfs voor hoge Reynolds-getallen.

Gerelateerd aan deze verschillen in de dynamica van deeltjes is het onderzoek
van Karamanev en collega’s (Karamanev and Nikolov 1992; Karamanev,Chavarie
& Mayer 1996; Karamanev 2001) over het gedrag van opstijgende deeltjes in een
Newtoniaanse vloeistof voor een deeltje-vloeistof dichtheidsverhouding kleiner
dan 0.3. Zij stellen voor om de standaard relatie voor de weerstandscoëfficiëntCD

als functie van het Reynolds-getal te vervangen doorCD = 0.95 voorRe > 130.
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In hoofdstuk 4 wordt aangetoond, dat onze experimenten dit gedrag niet bevesti-
gen. De weerstand blijkt te bestaan uit twee bijdragen (i) een viskeuze bijdrage,
die afgeschat kan worden met de standaard weerstandsrelatie, gebruikmakend van
het actuele Reynolds-getal, en (ii) een bijdrage, die voortkomt uit dezelfde mecha-
nismen als lift-gëınduceerde weerstand op vliegtuigvleugels.

De twee parameters, die de stijg- of valsnelheid controleren zijn de dichtheids-
verhouding tussen deeltje en vloeistofρs/ρ en het Galileo-getalG. Jenny, Dǔsek
& Bouchet (2003) bestudeerden de instabiliteit en transitie van de beweging van
vaste deeltjes in deze(G, ρs/ρ)-parameterruimte. Zij toonden aan, dat de parame-
terruimte opgedeeld kan worden in regimes met specifieke eigenschappen voor de
paden, die de deeltjes doorlopen. De parameterruimte laat duidelijk een asymme-
trie zien rond een dichtheidsverhouding vanéén. Hoofdstuk 5 toont een experi-
menteel onderzoek waarin de interesante conclusions van hun onderzoek worden
geverifïeerd. De experimenten komen goed overeen met de bevindingen in hun
numerieke onderzoek. Echter, de visualisaties van het zog achter de deeltjes laat
altijd een dubbeldraads zog zien. Dit spreekt de conclusie van Jenny, Dušek &
Bouchet, over het ontbreken van een dubbeldraads zog, tegen.

In hoofdstuk 6 worden de algemene eigenschappen van een bel (1 ≤ deq ≤
6mm) opstijgend in zuiver water bestudeerd. De kleinste bellen zijn afgeplatte el-
lipsoiden, die recht omhoog gaan en grotere bellen volgen een spiraalpad. Nog
grotere bellen vertonen vormoscillaties, die het pad sterk beı̈nvloeden. Vergelijk-
ing van de opstijgsnelheid en de belvorm met eerder onderzoek toont aan, dat het
gebruikte water inderdaad zuiver is.

Hoofdstuk 7 richt zich op afgeplatte ellipsoiden zonder vormoscillaties. Het
blijkt dat de weerstand, die werkt op de bel, afhangt van de viskeuze weerstand
en een bijdrage geı̈nduceerd door de liftkracht werkend op de bel. Variaties in de
viskeuze bijdrage door opbouw van het vorticiteitsveld door diffusie en convectie
zijn verwaarloosbaar voor hoge Reynolds-getallen.

Hoofdstuk 8 richt zich op grotere bellen met vormoscilaties. Voor belgroottes
net na het ontstaan van vormoscilaties gaat de spiraalbeweging over in een zigzag-
beweging. Dit komt door een koppeling met de niet-axisymmetrisch mode (2,2)
vormoscillatie. Bij nog grotere bellen zorgen meerdere vormoscillaties ervoor
dat de bel opstijgt in een grillig pad. Alle bellen vertonen een axisymmetrische
mode (2,0) vormoscillatie, die is gekoppeld aan oscillaties in de snelheid van de
bel en daardoor ook aan oscillaties in het zog achter de bel.

Een analytische methode voor het berekenen van vormoscillaties op een afge-
platte ellipsoidale bel is behandeld. Het limietgeval voor een afplattinggraad van
één, een bolvormige bel, wordt met deze methode correct berekend. Echter, voor
grotere afplattingsgraden treden er afwijkingen op ten opzichte van de numerieke
berekeningen van Meiron (1989).
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